login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156348
Triangle T(n,k) read by rows. Column of Pascal's triangle interleaved with k-1 zeros.
11
1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 3, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 4, 0, 4, 0, 0, 0, 1, 1, 0, 6, 0, 0, 0, 0, 0, 1, 1, 5, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 10, 10, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0
OFFSET
1,8
COMMENTS
The rows of the Pascal triangle are here found as square root parabolas like in the plots at www.divisorplot.com. Central binomial coefficients are found at the square root boundary.
A156348 * A000010 = A156834: (1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11, ...). - Gary W. Adamson, Feb 16 2009
Row sums give A157019.
LINKS
el Houcein el Abdalaoui, Mohamed Dahmoune and Djelloul Ziadi, On the transition reduction problem for finite automata, arXiv preprint arXiv:1301.3751 [cs.FL], 2013. - From N. J. A. Sloane, Feb 12 2013
Jeff Ventrella, Divisor Plot
EXAMPLE
Table begins:
1
1 1
1 0 1
1 2 0 1
1 0 0 0 1
1 3 3 0 0 1
1 0 0 0 0 0 1
1 4 0 4 0 0 0 1
1 0 6 0 0 0 0 0 1
1 5 0 0 5 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1
1 6 10 10 0 6 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 1
1 7 0 0 0 0 7 0 0 0 0 0 0 1
1 0 15 0 15 0 0 0 0 0 0 0 0 0 1
1 8 0 20 0 0 0 8 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 9 21 0 0 21 0 0 9 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 10 0 35 35 0 0 0 0 10 0 0 0 0 0 0 0 0 0 1
MAPLE
A156348 := proc(n, k)
if k < 1 or k > n then
return 0 ;
elif n mod k = 0 then
binomial(n/k-2+k, k-1) ;
else
0 ;
end if;
end proc: # R. J. Mathar, Mar 03 2013
MATHEMATICA
T[n_, k_] := Which[k < 1 || k > n, 0, Mod[n, k] == 0, Binomial[n/k - 2 + k, k - 1], True, 0];
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 16 2017 *)
PROG
(Haskell) Following Mathar's Maple program.
a156348 n k = a156348_tabl !! (n-1) !! (k-1)
a156348_tabl = map a156348_row [1..]
a156348_row n = map (f n) [1..n] where
f n k = if r == 0 then a007318 (n' - 2 + k) (k - 1) else 0
where (n', r) = divMod n k
-- Reinhard Zumkeller, Jan 31 2014
CROSSREFS
KEYWORD
nonn,tabl,easy,look
AUTHOR
Mats Granvik, Feb 08 2009
STATUS
approved