login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156834
7
1, 2, 3, 5, 5, 12, 7, 17, 19, 30, 11, 63, 13, 56, 99, 89, 17, 154, 19, 269, 237, 132, 23, 509, 301, 182, 379, 783, 29, 1230, 31, 881, 813, 306, 2125, 2431, 37, 380, 1299, 4157, 41, 4822, 43, 3695, 6175, 552, 47, 8529, 5587, 6266, 2787
OFFSET
1,2
COMMENTS
Conjecture: for n>1, a(n) = n iff n is prime. Companion to A156833.
LINKS
FORMULA
Equals A156348 * A054525 * [1, 2, 3,...]; where A054525 = the inverse Mobius transform.
a(n) = Sum_{d|n} phi(d) * binomial(d+n/d-2, d-1). - Seiichi Manyama, Apr 22 2021
G.f.: Sum_{k >= 1} phi(k) * (x/(1 - x^k))^k. - Seiichi Manyama, Apr 22 2021
EXAMPLE
a(4) = 5 = (1, 2, 0, 1) dot (1, 1, 2, 2) = (1 + 2 + 0 + 2), where row 4 of A156348 = (1, 2, 0, 1) and (1, 1, 2, 2) = the first 4 terms of Euler's phi function.
MAPLE
A156834 := proc(n)
add(A156348(n, k)*numtheory[phi](k), k=1..n) ;
end proc: # R. J. Mathar, Mar 03 2013
MATHEMATICA
a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[# + n/# - 2, #-1] &]; Array[a, 100] (* Amiram Eldar, Apr 22 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(d)*binomial(d+n/d-2, d-1)); \\ Seiichi Manyama, Apr 22 2021
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*(x/(1-x^k))^k)) \\ Seiichi Manyama, Apr 22 2021
CROSSREFS
Equals row sums of triangle A157030. [Gary W. Adamson, Feb 21 2009]
Sequence in context: A133278 A343395 A050368 * A376017 A079024 A357000
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Feb 16 2009
EXTENSIONS
Extended beyond a(14) by R. J. Mathar, Mar 03 2013
STATUS
approved