login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

%I #18 Apr 22 2021 09:05:58

%S 1,2,3,5,5,12,7,17,19,30,11,63,13,56,99,89,17,154,19,269,237,132,23,

%T 509,301,182,379,783,29,1230,31,881,813,306,2125,2431,37,380,1299,

%U 4157,41,4822,43,3695,6175,552,47,8529,5587,6266,2787

%N A156348 * A000010

%C Conjecture: for n>1, a(n) = n iff n is prime. Companion to A156833.

%H Seiichi Manyama, <a href="/A156834/b156834.txt">Table of n, a(n) for n = 1..10000</a>

%F Equals A156348 * A054525 * [1, 2, 3,...]; where A054525 = the inverse Mobius transform.

%F a(n) = Sum_{d|n} phi(d) * binomial(d+n/d-2, d-1). - _Seiichi Manyama_, Apr 22 2021

%F G.f.: Sum_{k >= 1} phi(k) * (x/(1 - x^k))^k. - _Seiichi Manyama_, Apr 22 2021

%e a(4) = 5 = (1, 2, 0, 1) dot (1, 1, 2, 2) = (1 + 2 + 0 + 2), where row 4 of A156348 = (1, 2, 0, 1) and (1, 1, 2, 2) = the first 4 terms of Euler's phi function.

%p A156834 := proc(n)

%p add(A156348(n,k)*numtheory[phi](k),k=1..n) ;

%p end proc: # _R. J. Mathar_, Mar 03 2013

%t a[n_] := DivisorSum[n, EulerPhi[#] * Binomial[# + n/# - 2, #-1] &]; Array[a, 100] (* _Amiram Eldar_, Apr 22 2021 *)

%o (PARI) a(n) = sumdiv(n, d, eulerphi(d)*binomial(d+n/d-2, d-1)); \\ _Seiichi Manyama_, Apr 22 2021

%o (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*(x/(1-x^k))^k)) \\ _Seiichi Manyama_, Apr 22 2021

%Y Cf. A156348, A000010, A156833, A157020, A343553.

%Y Equals row sums of triangle A157030. [_Gary W. Adamson_, Feb 21 2009]

%K nonn,easy

%O 1,2

%A _Gary W. Adamson_, Feb 16 2009

%E Extended beyond a(14) by _R. J. Mathar_, Mar 03 2013