login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156351 a(n) = Sum_{k=1..n} (-1)^K(k+1)*(K(k+1)-K(k)) where K(k) = A000002(k). 3
1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 17, 18, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 41, 41, 42, 43, 43, 44, 44, 45, 46, 46, 47, 48, 49, 49 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n)=1 plus the number of symbol changes in the first n terms of A078880. - Jean-Marc Fedou and Gabriele Fici, Mar 18 2010

LINKS

Jon Maiga, Table of n, a(n) for n = 1..10000

J.M. Fedou and G. Fici, Some remarks on differentiable sequences and recursivity, Journal of Integer Sequences 13(3): Article 10.3.2 (2010). [From Jean-Marc Fedou and Gabriele Fici, Mar 18 2010]

FORMULA

n - A054353(a(n)) = 1 if n is in A078649, n - A054353(a(n)) = 0 otherwise. A078649(n + 1 - a(n)) - n takes values among {0,1,2,3}.

a(n) = gcd(a(a(n-1)),2) + a(n-2) (conjectured). - Jon Maiga, Dec 07 2021

MATHEMATICA

a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1 + Mod[n - 1, 2]}], {n, 3, 80}, {i, 1, a2[[n]]}]; a[n_] := Sum[(-1)^a2[[k + 1]]*(a2[[k + 1]] - a2[[k]]), {k, 1, n}]; Table[a[n], {n, 1, 80}] (* Jean-Fran├žois Alcover, Jun 18 2013 *)

CROSSREFS

Partial sums of A156728.

Sequence in context: A242976 A218445 A034137 * A057561 A064726 A274616

Adjacent sequences:  A156348 A156349 A156350 * A156352 A156353 A156354

KEYWORD

nonn

AUTHOR

Benoit Cloitre, Feb 08 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 1 15:55 EDT 2022. Contains 357149 sequences. (Running on oeis4.)