login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156728
a(n) = abs(A054354(n)).
6
1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1
OFFSET
1,1
COMMENTS
This sequence is the image of the Kolakoski sequence A000002 under the morphism 1->1, 2->01. - Gabriele Fici, Aug 12 2013
LINKS
Jean-Marc Fedou and Gabriele Fici, Some remarks on differentiable sequences and recursivity, Journal of Integer Sequences 13(3): Article 10.3.2 (2010).
FORMULA
a(n) = (v(n+1) - v(n) + 1)/2 where v(n) = A156253(n) - A156251(n).
a(n) = (A000002(n) + A000002(n+1)) mod 2.
a(n) = A156253(n+1) - A156253(n). - Alan Michael Gómez Calderón, Dec 20 2024
MATHEMATICA
a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1 + Mod[n - 1, 2]}], {n, 3, 105}, {i, 1, a2[[n]]}]; a[n_] := Mod[a2[[n]] + a2[[n + 1]], 2]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Jun 18 2013 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Benoit Cloitre, Feb 14 2009
STATUS
approved