login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156730
Triangle T(n, k) = Product_{j=1..k} Product_{i=0..j-1} ( 1 - (n-k+1)*(3*i-2) ) with T(n, 0) = 1 and T(n, n) = n!, read by rows.
6
1, 1, 1, 1, 5, 2, 1, 7, -25, 6, 1, 9, -98, -875, 24, 1, 11, -243, -15092, 398125, 120, 1, 13, -484, -98415, 46483360, 3441790625, 720, 1, 15, -845, -404624, 1076168025, 4151893715200, -743856998828125, 5040, 1, 17, -1350, -1263275, 11501032576, 458947996781625, -14092191572383232000, -4983748910023583984375, 40320
OFFSET
0,5
COMMENTS
Row sums are: 1, 2, 8, -11, -939, 382922, 3488175820, -739704029345313, -4997840642636470626461, ...
FORMULA
Let the square array t(n, k) be given by t(n, k) = Product_{j=1..n} Product_{i=0..j-1} ( 1 - (k+1)*(3*i -2) ) with t(n, 0) = n!. The number triangle, T(n, k), is the downward antidiagonals, i.e. T(n, k) = t(k, n-k).
T(n, k) = (-3*(n-k+1))^binomial(k+1, 2)*Product_{j=1..k} Pochhammer( -(2*(n-k) + 3)/(3*(n-k+1)), j) with T(n, 0) = 1 and T(n, n) = n!. - G. C. Greubel, Feb 25 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 5, 2;
1, 7, -25, 6;
1, 9, -98, -875, 24;
1, 11, -243, -15092, 398125, 120;
1, 13, -484, -98415, 46483360, 3441790625, 720;
1, 15, -845, -404624, 1076168025, 4151893715200, -743856998828125, 5040;
MATHEMATICA
(* First program *)
t[n_, k_]= If[k==0, n!, Product[1 -(3*i-2)*(k+1), {j, n}, {i, 0, j-1}]];
Table[t[k, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 25 2021 *)
(* Second program *)
T[n_, k_, p_, q_]:= If[k==0, 1, If[k==n, n!, (-p*(n-k+1))^Binomial[k+1, 2]*Product[ Pochhammer[(q*(n-k+1) -1)/(p*(n-k+1)), j], {j, k}]]];
Table[T[n, k, 3, -2], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 25 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k, p, q):
if (k==0): return 1
elif (k==n): return factorial(n)
else: return (-p*(n-k+1))^binomial(k+1, 2)*product( rising_factorial( (q*(n-k+1)-1)/(p*(n-k+1)), j) for j in (1..k))
flatten([[T(n, k, 3, -2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 24 2021
(Magma)
function T(n, k, p, q)
if k eq 0 then return 1;
elif k eq n then return Factorial(n);
else return (&*[1 - (n-k+1)*(p*m+q): m in [0..j-1], j in [1..k]]);
end if; return T;
end function;
[T(n, k, 3, -2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 25 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 14 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 25 2021
STATUS
approved