OFFSET
0,5
COMMENTS
Row sums are: 1, 2, 8, -11, -939, 382922, 3488175820, -739704029345313, -4997840642636470626461, ...
LINKS
G. C. Greubel, Rows n = 0..30 of the triangle, flattened
FORMULA
Let the square array t(n, k) be given by t(n, k) = Product_{j=1..n} Product_{i=0..j-1} ( 1 - (k+1)*(3*i -2) ) with t(n, 0) = n!. The number triangle, T(n, k), is the downward antidiagonals, i.e. T(n, k) = t(k, n-k).
T(n, k) = (-3*(n-k+1))^binomial(k+1, 2)*Product_{j=1..k} Pochhammer( -(2*(n-k) + 3)/(3*(n-k+1)), j) with T(n, 0) = 1 and T(n, n) = n!. - G. C. Greubel, Feb 25 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 5, 2;
1, 7, -25, 6;
1, 9, -98, -875, 24;
1, 11, -243, -15092, 398125, 120;
1, 13, -484, -98415, 46483360, 3441790625, 720;
1, 15, -845, -404624, 1076168025, 4151893715200, -743856998828125, 5040;
MATHEMATICA
(* First program *)
t[n_, k_]= If[k==0, n!, Product[1 -(3*i-2)*(k+1), {j, n}, {i, 0, j-1}]];
Table[t[k, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 25 2021 *)
(* Second program *)
T[n_, k_, p_, q_]:= If[k==0, 1, If[k==n, n!, (-p*(n-k+1))^Binomial[k+1, 2]*Product[ Pochhammer[(q*(n-k+1) -1)/(p*(n-k+1)), j], {j, k}]]];
Table[T[n, k, 3, -2], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 25 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k, p, q):
if (k==0): return 1
elif (k==n): return factorial(n)
else: return (-p*(n-k+1))^binomial(k+1, 2)*product( rising_factorial( (q*(n-k+1)-1)/(p*(n-k+1)), j) for j in (1..k))
flatten([[T(n, k, 3, -2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 24 2021
(Magma)
function T(n, k, p, q)
if k eq 0 then return 1;
elif k eq n then return Factorial(n);
else return (&*[1 - (n-k+1)*(p*m+q): m in [0..j-1], j in [1..k]]);
end if; return T;
end function;
[T(n, k, 3, -2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 25 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 14 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 25 2021
STATUS
approved