The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156725 Triangle T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(3*i-2) ) and m = 2, read by rows. 6
 1, 1, 1, 1, -2, 1, 1, 22, 22, 1, 1, -440, 4840, -440, 1, 1, 12760, 2807200, 2807200, 12760, 1, 1, -484880, 3093534400, -61870688000, 3093534400, -484880, 1, 1, 22789360, 5525052438400, 3204530414272000, 3204530414272000, 5525052438400, 22789360, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 0, 46, 3962, 5639922, -55684588958, 6420110978999522, 8653645559546848833282, 120959123027642635275104364802, ...}. LINKS G. C. Greubel, Rows n = 0..30 of the triangle, flattened FORMULA T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(3*i-2) ) and m = 2. T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (2, 3, -2). - G. C. Greubel, Feb 26 2021 EXAMPLE Triangle begins as:   1;   1,       1;   1,      -2,          1;   1,      22,         22,            1;   1,    -440,       4840,         -440,          1;   1,   12760,    2807200,      2807200,      12760,       1;   1, -484880, 3093534400, -61870688000, 3093534400, -484880, 1; MATHEMATICA (* First program *) t[n_, k_]:= If[k==0, n!, Product[1 -(3*i-2)*(k+1), {j, n}, {i, 0, j-1}] ]; T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])]; Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 26 2021 *) (* Second program *) f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j, n}]; T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n, m, p, q]/(f[k, m, p, q]*f[n-k, m, p, q])); Table[T[n, k, 2, 3, -2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 26 2021 *) PROG (Sage) @CachedFunction def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n)) def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q))) flatten([[T(n, k, 2, 3, -2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 26 2021 (Magma) f:= func< n, m, p, q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >; T:= func< n, k, m, p, q | f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)) >; [T(n, k, 2, 3, -2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 26 2021 CROSSREFS Cf. A007318 (m=0), A156722 (m=1), this sequence (m=2), A156727 (m=3). Cf. A156691, A156697, A156730. Sequence in context: A174174 A156889 A172177 * A141904 A246072 A147802 Adjacent sequences:  A156722 A156723 A156724 * A156726 A156727 A156728 KEYWORD sign,tabl AUTHOR Roger L. Bagula, Feb 14 2009 EXTENSIONS Edited by G. C. Greubel, Feb 26 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 21:22 EDT 2021. Contains 347717 sequences. (Running on oeis4.)