login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141904
Triangle of the numerators of coefficients c(n,k) = [x^k] P(n,x) of some polynomials P(n,x).
4
1, -1, 1, 1, -2, 1, -1, 23, -1, 1, 1, -44, 14, -4, 1, -1, 563, -818, 22, -5, 1, 1, -3254, 141, -1436, 19, -2, 1, -1, 88069, -13063, 21757, -457, 43, -7, 1, 1, -11384, 16774564, -11368, 7474, -680, 56, -8, 1, -1, 1593269, -1057052, 35874836, -261502, 3982, -688, 212, -3, 1, 1, -15518938, 4651811
OFFSET
0,5
COMMENTS
Let the polynomials P be defined by P(0,x)=u(0), P(n,x)= u(n) + x*sum_{i=0..n-1} u(i)*P(n-i-1,x) and coefficients u(i)=(-1)^i/(2i+1). These u are reminiscent of the Leibniz' Taylor expansion to calculate arctan(1) =pi/4 = A003881. Then P(n,x) = sum_{k=0..n} c(n,k)*x^k.
REFERENCES
P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p.44.
P. Flajolet, X. Gourdon, B. Salvy, Gazette des Mathematiciens, 1993, no. 55, pp.67-78.
EXAMPLE
The polynomials P(n,x) are for n=0 to 5:
1 = P(0,x).
-1/3+x = P(1,x).
1/5-2/3*x+x^2 = P(2,x).
-1/7+23/45*x-x^2+x^3 = P(3,x).
1/9-44/105*x+14/15*x^2-4/3*x^3+x^4 = P(4,x).
-1/11+563/1575*x-818/945*x^2+22/15*x^3-5/3*x^4+x^5 = P(5,x).
MAPLE
u := proc(i) (-1)^i/(2*i+1) ; end:
P := proc(n, x) option remember ; if n =0 then u(0); else u(n)+x*add( u(i)*procname(n-1-i, x), i=0..n-1) ; expand(%) ; fi; end:
A141904 := proc(n, k) p := P(n, x) ; numer(coeftayl(p, x=0, k)) ; end: seq(seq(A141904(n, k), k=0..n), n=0..13) ; # R. J. Mathar, Aug 24 2009
MATHEMATICA
ClearAll[u, p]; u[n_] := (-1)^n/(2*n + 1); p[0][x_] := u[0]; p[n_][x_] := p[n][x] = u[n] + x*Sum[u[i]*p[n - i - 1][x] , {i, 0, n-1}] // Expand; row[n_] := CoefficientList[ p[n][x], x]; Table[row[n], {n, 0, 10}] // Flatten // Numerator (* Jean-François Alcover, Oct 02 2012 *)
CROSSREFS
Cf. A142048 (denominators), A140749, A141412 (where u=(-1)^i/(i+1)).
Sequence in context: A156889 A172177 A156725 * A246072 A147802 A093076
KEYWORD
sign,frac,tabl
AUTHOR
Paul Curtz, Sep 14 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Aug 24 2009
STATUS
approved