login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141901 A skew triangle sequence of coefficients: t(n,m)=If[n*m == 0, 1, (n *Gamma[n] *Hypergeometric2F1[1, 1 + m - n, 2 + m, -1])/(Gamma[2 + m]* Gamma[ -m + n]) - 2^(n - m)]. 0
1, 1, -1, 1, -1, -1, 1, 0, -1, -1, 1, 3, 1, -1, -1, 1, 10, 8, 2, -1, -1, 1, 25, 26, 14, 3, -1, -1, 1, 56, 67, 48, 21, 4, -1, -1, 1, 119, 155, 131, 77, 29, 5, -1, -1, 1, 246, 338, 318, 224, 114, 38, 6, -1, -1, 1, 501, 712, 720, 574, 354, 160, 48, 7, -1, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

Row sums are:

{1, 0, -1, -1, 3, 19, 67, 195, 515, 1283, 3075}.

LINKS

Table of n, a(n) for n=1..66.

FORMULA

t(n,m)=If[n*m == 0, 1, (n *Gamma[n] *Hypergeometric2F1[1, 1 + m - n, 2 + m, -1])/(Gamma[2 + m]* Gamma[ -m + n]) - 2^(n - m)].

EXAMPLE

{1},

{1, -1},

{1, -1, -1},

{1, 0, -1, -1},

{1, 3, 1, -1, -1},

{1, 10, 8, 2, -1, -1},

{1, 25, 26, 14, 3, -1, -1},

{1, 56, 67, 48, 21, 4, -1, -1},

{1, 119, 155, 131, 77, 29, 5, -1, -1},

{1, 246, 338, 318, 224, 114, 38,6, -1, -1},

{1, 501, 712, 720, 574, 354, 160, 48, 7, -1, -1}

MATHEMATICA

t[n_, m_] = If[n*m == 0, 1, (n *Gamma[n] *Hypergeometric2F1[1, 1 + m - n, 2 + m, -1])/(Gamma[2 + m]* Gamma[ -m + n]) - 2^(n - m)]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

CROSSREFS

Sequence in context: A119329 A054724 A061494 * A200473 A180172 A327372

Adjacent sequences:  A141898 A141899 A141900 * A141902 A141903 A141904

KEYWORD

uned,sign

AUTHOR

Roger L. Bagula and Gary W. Adamson, Sep 13 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 6 11:27 EDT 2020. Contains 333273 sequences. (Running on oeis4.)