login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200473
Irregular triangle read by rows: T(n,k) = number of ways to assign n people to d_k unlabeled groups of equal size (where d_k is the k-th divisor of n).
3
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 10, 15, 1, 1, 1, 1, 35, 105, 1, 1, 280, 1, 1, 126, 945, 1, 1, 1, 1, 462, 5775, 15400, 10395, 1, 1, 1, 1, 1716, 135135, 1, 1, 126126, 1401400, 1, 1, 6435, 2627625, 2027025, 1, 1, 1, 1, 24310, 2858856, 190590400, 34459425, 1, 1
OFFSET
1,7
COMMENTS
This sequence is A200472 with zeros removed.
FORMULA
T(n,k) = (n!/d_k!)/(n/d_k)!^d_k, n>=1, 1<=k<=tau(n), d_k = k-th divisor of n.
Sum_{k=1..tau(k)} T(n,k) = A038041(n). - Alois P. Heinz, Jul 22 2016
EXAMPLE
T(n,k) begins:
1;
1, 1;
1, 1;
1, 3, 1;
1, 1;
1, 10, 15, 1;
1, 1;
1, 35, 105, 1;
1, 280, 1;
1, 126, 945, 1;
1, 1;
1, 462, 5775, 15400, 10395, 1;
1, 1;
1, 1716, 135135, 1;
1, 126126, 1401400, 1;
1, 6435, 2627625, 2027025, 1;
MAPLE
with(numtheory):
S:= n-> sort([divisors(n)[]]):
T:= (n, k)-> n!/(S(n)[k])!/((n/(S(n)[k]))!)^(S(n)[k]):
seq(seq(T(n, k), k=1..tau(n)), n=1..10);
MATHEMATICA
row[n_] := (n!/#!)/(n/#)!^#& /@ Divisors[n];
Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Mar 24 2017 *)
CROSSREFS
Cf. A200472, A000005 (row lengths).
Cf. A038041 (row sums).
Sequence in context: A061494 A360161 A141901 * A361948 A180172 A327372
KEYWORD
nonn,tabf
AUTHOR
Dennis P. Walsh, Nov 18 2011
STATUS
approved