login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: T(n,k) = number of ways to assign n people to d_k unlabeled groups of equal size (where d_k is the k-th divisor of n).
3

%I #28 Mar 24 2017 03:49:50

%S 1,1,1,1,1,1,3,1,1,1,1,10,15,1,1,1,1,35,105,1,1,280,1,1,126,945,1,1,1,

%T 1,462,5775,15400,10395,1,1,1,1,1716,135135,1,1,126126,1401400,1,1,

%U 6435,2627625,2027025,1,1,1,1,24310,2858856,190590400,34459425,1,1

%N Irregular triangle read by rows: T(n,k) = number of ways to assign n people to d_k unlabeled groups of equal size (where d_k is the k-th divisor of n).

%C This sequence is A200472 with zeros removed.

%H Alois P. Heinz, <a href="/A200473/b200473.txt">Rows n = 1..250, flattened</a>

%H Dennis P. Walsh, <a href="http://frank.mtsu.edu/~dwalsh/GROUPCT3.pdf">Note on assigning n people to k unlabeled groups of equal size</a>

%F T(n,k) = (n!/d_k!)/(n/d_k)!^d_k, n>=1, 1<=k<=tau(n), d_k = k-th divisor of n.

%F Sum_{k=1..tau(k)} T(n,k) = A038041(n). - _Alois P. Heinz_, Jul 22 2016

%e T(n,k) begins:

%e 1;

%e 1, 1;

%e 1, 1;

%e 1, 3, 1;

%e 1, 1;

%e 1, 10, 15, 1;

%e 1, 1;

%e 1, 35, 105, 1;

%e 1, 280, 1;

%e 1, 126, 945, 1;

%e 1, 1;

%e 1, 462, 5775, 15400, 10395, 1;

%e 1, 1;

%e 1, 1716, 135135, 1;

%e 1, 126126, 1401400, 1;

%e 1, 6435, 2627625, 2027025, 1;

%p with(numtheory):

%p S:= n-> sort([divisors(n)[]]):

%p T:= (n,k)-> n!/(S(n)[k])!/((n/(S(n)[k]))!)^(S(n)[k]):

%p seq(seq(T(n, k), k=1..tau(n)), n=1..10);

%t row[n_] := (n!/#!)/(n/#)!^#& /@ Divisors[n];

%t Table[row[n], {n, 1, 20}] // Flatten (* _Jean-François Alcover_, Mar 24 2017 *)

%Y Cf. A200472, A000005 (row lengths).

%Y Cf. A038041 (row sums).

%K nonn,tabf

%O 1,7

%A _Dennis P. Walsh_, Nov 18 2011