login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200476
Number of partitions of n such that the number of parts and the largest part and the smallest part are pairwise not coprime.
2
0, 0, 0, 1, 0, 1, 0, 3, 1, 3, 1, 8, 3, 9, 6, 16, 9, 24, 17, 35, 29, 49, 45, 81, 73, 110, 115, 166, 166, 240, 250, 347, 372, 491, 539, 715, 776, 988, 1109, 1393, 1553, 1935, 2178, 2676, 3034, 3674, 4176, 5056, 5734, 6862, 7834, 9316, 10615, 12576, 14341, 16890
OFFSET
1,8
COMMENTS
See comments in A199891, which apply to this sequence also.
LINKS
EXAMPLE
a(8) = 3: [2,6], [4,4], [2,2,2,2];
a(9) = 1: [3,3,3];
a(10) = 3: [2,8], [4,6], [2,2,2,4];
a(11) = 1: [2,2,3,4];
a(12) = 8: [2,10], [4,8], [6,6], [3,3,6], [2,2,2,6], [2,2,4,4], [2,3,3,4], [2,2,2,2,2,2].
MAPLE
b:= proc(n, j, t, k) option remember;
add(b(n-i, i, t+1, k), i=j..iquo(n, 2))+
`if`(igcd(n, t)>1 and igcd(k, t)>1 and igcd(n, k)>1, 1, 0)
end:
a:= n-> add(b(n-j, j, 2, j), j=2..iquo(n, 2)):
seq(a(n), n=1..70);
MATHEMATICA
b[n_, j_, t_, k_] := b[n, j, t, k] = Sum[b[n-i, i, t+1, k], {i, j, Quotient[n, 2]}] + If[GCD[n, t]>1 && GCD[k, t]>1 && GCD[n, k]>1, 1, 0]; a[n_] := Sum [b[n-j, j, 2, j], {j, 2, Quotient[n, 2]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Feb 06 2017, translated from Maple *)
CROSSREFS
Cf. A199891.
Sequence in context: A349619 A082495 A329385 * A300251 A016572 A072860
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 18 2011
STATUS
approved