login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199891
Number of compositions of n such that the number of parts and the largest part and the smallest part are pairwise not coprime.
2
0, 0, 0, 1, 0, 2, 0, 4, 1, 8, 12, 31, 30, 50, 84, 166, 240, 367, 560, 970, 1647, 2736, 4340, 6924, 11185, 18334, 29875, 48272, 77632, 125262, 202838, 329098, 533758, 865248, 1402099, 2271831, 3680202, 5960113, 9650231, 15624475, 25301422, 40983324, 66398800
OFFSET
1,6
COMMENTS
The smallest example without an overall common divisor is [10,10,10,10,10,15] (and its permutations), for n = 65. - Franklin T. Adams-Watters, Nov 16 2011
The smallest example where all 3 common divisors are different is [6,6,6,12] (and its permutations), for n = 30. - Alois P. Heinz, Nov 16 2011
LINKS
EXAMPLE
a(9) = 1: [3,3,3].
a(10) = 8: [2,2,2,4], [2,2,4,2], [2,4,2,2], [2,8], [4,2,2,2], [4,6], [6,4], [8,2].
MAPLE
b:= proc(n, t, g, k) option remember;
`if`(n=0, `if`(igcd(g, t)<>1 and igcd(k, t)<>1
and igcd(g, k)<>1, 1, 0),
add(b(n-i, t+1, max(i, g), min(i, k)), i=2..n))
end:
a:= n-> b(n, 0, 0, infinity):
seq(a(n), n=1..50);
MATHEMATICA
b[n_, t_, g_, k_] := b[n, t, g, k] = If[n == 0, If[GCD[g, t] != 1 && GCD[k, t] != 1 && GCD[g, k] != 1, 1, 0], Sum[b[n-i, t+1, Max[i, g], Min[i, k]], {i, 2, n}]]; a[n_] := b[n, 0, 0, Infinity]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Nov 06 2014, after Alois P. Heinz *)
CROSSREFS
Cf. A200476.
Sequence in context: A305371 A355018 A177256 * A339417 A351558 A226240
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 11 2011
STATUS
approved