|
|
A199889
|
|
Number of compositions of n such that the number of parts and the smallest part are not coprime.
|
|
3
|
|
|
0, 0, 0, 1, 2, 2, 2, 4, 9, 17, 30, 49, 76, 116, 180, 286, 460, 746, 1217, 1990, 3251, 5303, 8639, 14057, 22844, 37077, 60110, 97356, 157568, 254920, 412387, 667212, 1079754, 1747807, 2829756, 4582021, 7419619, 12014143, 19452288, 31492382, 50979547, 82517631
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(8) = 4: [2,2,2,2], [2,6], [4,4], [6,2].
|
|
MAPLE
|
b:= proc(n, t, g) option remember;
`if`(n=0, `if`(igcd(g, t)<>1, 1, 0),
add(b(n-i, t+1, min(i, g)), i=1..n))
end:
a:= n-> b(n, 0, infinity):
seq(a(n), n=1..50);
|
|
MATHEMATICA
|
b[n_, t_, g_] := b[n, t, g] = If[n == 0, If[GCD[g, t] != 1, 1, 0], Sum[b[n-i, t+1, Min[i, g]], {i, 1, n}]]; a[n_] := b[n, 0, Infinity]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 05 2014, after Alois P. Heinz *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|