login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141903
A linear combination of A008292 and A130595: t(n,m)=2*A008292(n,m)- A130595(n,m).
0
1, 1, 3, 1, 10, 1, 1, 25, 19, 3, 1, 56, 126, 56, 1, 1, 119, 594, 614, 109, 3, 1, 246, 2367, 4852, 2367, 246, 1, 1, 501, 8565, 31273, 31203, 8607, 487, 3, 1, 1012, 29188, 176524, 312310, 176524, 29188, 1012, 1, 1, 2035, 95644, 910468, 2620582, 2620834, 910300
OFFSET
1,3
COMMENTS
Row sums are:
{1, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600}.
FORMULA
t(n,m)=2*A008292(n,m)- A130595(n,m).
EXAMPLE
{1},
{1, 3},
{1, 10, 1},
{1, 25, 19, 3},
{1, 56, 126, 56, 1},
{1, 119, 594, 614, 109, 3},
{1, 246, 2367, 4852, 2367, 246, 1},
{1, 501, 8565, 31273, 31203, 8607, 487, 3},
{1, 1012, 29188, 176524, 312310, 176524, 29188, 1012, 1},
{1, 2035, 95644, 910468, 2620582, 2620834, 910300, 95716, 2017, 3}
MATHEMATICA
A[n_, 1] := 1 A[n_, n_] := 1 A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k]; Table[Table[2*A[n, k] - (-1)^(k + 1)*Binomial[n - 1, k - 1], {k, 1, n}], {n, 1, 10}]; Flatten[%]
CROSSREFS
Cf. A008292 and A130595.
Sequence in context: A355559 A227758 A304638 * A010289 A226646 A347129
KEYWORD
nonn,uned
AUTHOR
STATUS
approved