login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A141903 A linear combination of A008292 and A130595: t(n,m)=2*A008292(n,m)- A130595(n,m). 0
1, 1, 3, 1, 10, 1, 1, 25, 19, 3, 1, 56, 126, 56, 1, 1, 119, 594, 614, 109, 3, 1, 246, 2367, 4852, 2367, 246, 1, 1, 501, 8565, 31273, 31203, 8607, 487, 3, 1, 1012, 29188, 176524, 312310, 176524, 29188, 1012, 1, 1, 2035, 95644, 910468, 2620582, 2620834, 910300 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Row sums are:

{1, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600}.

LINKS

Table of n, a(n) for n=1..52.

FORMULA

t(n,m)=2*A008292(n,m)- A130595(n,m).

EXAMPLE

{1},

{1, 3},

{1, 10, 1},

{1, 25, 19, 3},

{1, 56, 126, 56, 1},

{1, 119, 594, 614, 109, 3},

{1, 246, 2367, 4852, 2367, 246, 1},

{1, 501, 8565, 31273, 31203, 8607, 487, 3},

{1, 1012, 29188, 176524, 312310, 176524, 29188, 1012, 1},

{1, 2035, 95644, 910468, 2620582, 2620834, 910300, 95716, 2017, 3}

MATHEMATICA

A[n_, 1] := 1 A[n_, n_] := 1 A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k]; Table[Table[2*A[n, k] - (-1)^(k + 1)*Binomial[n - 1, k - 1], {k, 1, n}], {n, 1, 10}]; Flatten[%]

CROSSREFS

Cf. A008292 and A130595.

Sequence in context: A090479 A227758 A304638 * A010289 A226646 A127613

Adjacent sequences:  A141900 A141901 A141902 * A141904 A141905 A141906

KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula and Gary W. Adamson, Sep 14 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 12:20 EST 2020. Contains 338902 sequences. (Running on oeis4.)