login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A linear combination of A008292 and A130595: t(n,m)=2*A008292(n,m)- A130595(n,m).
0

%I #2 Oct 12 2012 14:54:51

%S 1,1,3,1,10,1,1,25,19,3,1,56,126,56,1,1,119,594,614,109,3,1,246,2367,

%T 4852,2367,246,1,1,501,8565,31273,31203,8607,487,3,1,1012,29188,

%U 176524,312310,176524,29188,1012,1,1,2035,95644,910468,2620582,2620834,910300

%N A linear combination of A008292 and A130595: t(n,m)=2*A008292(n,m)- A130595(n,m).

%C Row sums are:

%C {1, 4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600}.

%F t(n,m)=2*A008292(n,m)- A130595(n,m).

%e {1},

%e {1, 3},

%e {1, 10, 1},

%e {1, 25, 19, 3},

%e {1, 56, 126, 56, 1},

%e {1, 119, 594, 614, 109, 3},

%e {1, 246, 2367, 4852, 2367, 246, 1},

%e {1, 501, 8565, 31273, 31203, 8607, 487, 3},

%e {1, 1012, 29188, 176524, 312310, 176524, 29188, 1012, 1},

%e {1, 2035, 95644, 910468, 2620582, 2620834, 910300, 95716, 2017, 3}

%t A[n_, 1] := 1 A[n_, n_] := 1 A[n_, k_] := (n - k + 1)A[n - 1, k - 1] + k A[n - 1, k]; Table[Table[2*A[n, k] - (-1)^(k + 1)*Binomial[n - 1, k - 1], {k, 1, n}], {n, 1, 10}]; Flatten[%]

%Y Cf. A008292 and A130595.

%K nonn,uned

%O 1,3

%A _Roger L. Bagula_ and _Gary W. Adamson_, Sep 14 2008