|
|
A226646
|
|
Number of ways to express m/n as Egyptian fractions in just three terms, that is, m/n = 1/x + 1/y + 1/z satisfying 1 <= x <= y <= z and read by antidiagonals.
|
|
6
|
|
|
3, 1, 10, 1, 3, 21, 0, 3, 8, 28, 0, 1, 3, 10, 36, 0, 1, 3, 6, 12, 57, 0, 1, 2, 3, 10, 21, 42, 0, 0, 1, 4, 2, 10, 17, 70, 0, 0, 1, 3, 3, 8, 9, 28, 79, 0, 0, 0, 1, 3, 4, 7, 20, 26, 96, 0, 0, 1, 1, 2, 3, 4, 10, 21, 36, 62, 0, 0, 0, 1, 1, 7, 1, 7, 6, 21, 25, 160, 0, 0, 0, 1, 0, 3, 3, 6, 12, 12, 16, 57, 59
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
See A073101 for the 4/n conjecture due to Erdös and Straus.
The first upper diagonal is 10, 8, 6, 2, 4, 1, 2, 1, 2, 0, 3, 0, 0, 1, 0, 0, 1, 0, 1, 0,... .
The main diagonal is: 3, 3, 3, 3, 3, 3, ... since 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/4 + 1/4 = 1/3 + 1/3 + 1/3. See A002966(3).
The first lower diagonal is 1, 3, 3, 4, 3, 7, 3, 5, 4, 6, 3, 10, 3, 6, 6, 6, 3, 9, 3, 9, ... .
The antidiagonal sum is 3, 11, 25, 39, 50, 79, 79, 104, 131, 157, 140, 229, 169, 220, 295, 282, ... .
|
|
LINKS
|
Table of n, a(n) for n=1..91.
Christian Elsholtz, Sums Of k Unit Fractions
David Eppstein, Algorithms for Egyptian Fractions
David Eppstein, Ten Algorithms for Egyptian Fractions
Ron Knott Egyptian Fractions
Oakland University The Erdős Number Project
Eric Weisstein's World of Mathematics, Egyptian Fraction
Index entries for sequences related to Egyptian fractions
|
|
EXAMPLE
|
../n
m/ 1...2...3...4...5...6...7...8...9..10..11...12..13...14...15 =Allocation nbr.
.1 3..10..21..28..36..57..42..70..79..96..62..160..59..136..196 A004194
.2 1...3...8..10..12..21..17..28..26..36..25...57..20...42...81 A226641
.3 1...3...3...6..10..10...9..20..21..21..16...28..11...33...36 A226642
.4 0...1...3...3...2...8...7..10...6..12...9...21...4...17...39 A192787
.5 0...1...2...4...3...4...4...7..12..10...3...17...6...21...21 A226644
.6 0...1...1...3...3...3...1...6...8..10...7...10...1....9...12 A226645
.7 0...0...1...1...2...7...3...2...3...5...2...13...8...10....9 n/a
.8 0...0...0...1...1...3...3...3...1...2...0....8...3....7...19 n/a
.9 0...0...1...1...0...3...2...5...3...2...0....6...2....4...10 n/a
10 0...0...0...1...1...2...0...4...4...3...0....4...1....4....8 n/a
Triangle (by antidiagonals):
{3},
{1, 10},
{1, 3, 21},
{0, 3, 8, 28},
{0, 1, 3, 10, 36},
{0, 1, 3, 6, 12, 57}, ...
|
|
MATHEMATICA
|
f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Table[f[n, m - n + 1], {m, 12}, {n, m, 1, -1}] // Flatten
|
|
CROSSREFS
|
Cf. A227612, A226640, A226641, A226642, A192787, A226644, A226645.
Sequence in context: A304638 A141903 A010289 * A347129 A127613 A211360
Adjacent sequences: A226643 A226644 A226645 * A226647 A226648 A226649
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Allan C. Wechsler and Robert G. Wilson v, Aug 17 2013
|
|
STATUS
|
approved
|
|
|
|