login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226646
Number of ways to express m/n as Egyptian fractions in just three terms, that is, m/n = 1/x + 1/y + 1/z satisfying 1 <= x <= y <= z and read by antidiagonals.
6
3, 1, 10, 1, 3, 21, 0, 3, 8, 28, 0, 1, 3, 10, 36, 0, 1, 3, 6, 12, 57, 0, 1, 2, 3, 10, 21, 42, 0, 0, 1, 4, 2, 10, 17, 70, 0, 0, 1, 3, 3, 8, 9, 28, 79, 0, 0, 0, 1, 3, 4, 7, 20, 26, 96, 0, 0, 1, 1, 2, 3, 4, 10, 21, 36, 62, 0, 0, 0, 1, 1, 7, 1, 7, 6, 21, 25, 160, 0, 0, 0, 1, 0, 3, 3, 6, 12, 12, 16, 57, 59
OFFSET
1,1
COMMENTS
See A073101 for the 4/n conjecture due to Erdös and Straus.
The first upper diagonal is 10, 8, 6, 2, 4, 1, 2, 1, 2, 0, 3, 0, 0, 1, 0, 0, 1, 0, 1, 0,... .
The main diagonal is: 3, 3, 3, 3, 3, 3, ... since 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/4 + 1/4 = 1/3 + 1/3 + 1/3. See A002966(3).
The first lower diagonal is 1, 3, 3, 4, 3, 7, 3, 5, 4, 6, 3, 10, 3, 6, 6, 6, 3, 9, 3, 9, ... .
The antidiagonal sum is 3, 11, 25, 39, 50, 79, 79, 104, 131, 157, 140, 229, 169, 220, 295, 282, ... .
EXAMPLE
../n
m/ 1...2...3...4...5...6...7...8...9..10..11...12..13...14...15 =Allocation nbr.
.1 3..10..21..28..36..57..42..70..79..96..62..160..59..136..196 A004194
.2 1...3...8..10..12..21..17..28..26..36..25...57..20...42...81 A226641
.3 1...3...3...6..10..10...9..20..21..21..16...28..11...33...36 A226642
.4 0...1...3...3...2...8...7..10...6..12...9...21...4...17...39 A192787
.5 0...1...2...4...3...4...4...7..12..10...3...17...6...21...21 A226644
.6 0...1...1...3...3...3...1...6...8..10...7...10...1....9...12 A226645
.7 0...0...1...1...2...7...3...2...3...5...2...13...8...10....9 n/a
.8 0...0...0...1...1...3...3...3...1...2...0....8...3....7...19 n/a
.9 0...0...1...1...0...3...2...5...3...2...0....6...2....4...10 n/a
10 0...0...0...1...1...2...0...4...4...3...0....4...1....4....8 n/a
Triangle (by antidiagonals):
{3},
{1, 10},
{1, 3, 21},
{0, 3, 8, 28},
{0, 1, 3, 10, 36},
{0, 1, 3, 6, 12, 57},
...
MATHEMATICA
f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 1 <= x <= y <= z, {x, y, z}, Integers]; Table[f[n, m - n + 1], {m, 12}, {n, m, 1, -1}] // Flatten
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved