login
A226648
Numbers k such that Sum_{j=1..k} sigma(j) is a triangular number, where sigma(j) = sum of divisors of j (A000203).
1
1, 4, 5, 50, 64, 906, 966, 5805, 40514, 133667, 262277, 1416109, 42142704, 189758142, 350476553, 957982453, 1420733777, 1421477786, 2557347701, 28609375750, 95023678204, 100094778026, 119964793932
OFFSET
1,2
COMMENTS
Indices of triangular numbers in A024916.
The sequence of indices of generated triangular numbers b(n) begins: 1, 5, 6, 64, 82, 1162, 1239, 7445, 51961, 171434, 336383, 1816230, 54050118, 243374273, 449503643, 1228660232, 1822161864, 1823116093, 3279925859. A024916(a(n)) = A000217(b(n)).
PROG
(PARI) isok(n) = ispolygonal(sum(k=1, n, sigma(k)), 3); \\ Michel Marcus, Nov 08 2014
(Python) # See LINKS.
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Alex Ratushnyak, Jun 13 2013
EXTENSIONS
a(20)-a(23) from Lucas A. Brown, Mar 08 2024
STATUS
approved