login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226649
Fibonacci shuffles: a(2n) = A000071(n) and a(2n+1) = A001611(n+2).
2
0, 2, 0, 3, 1, 4, 2, 6, 4, 9, 7, 14, 12, 22, 20, 35, 33, 56, 54, 90, 88, 145, 143, 234, 232, 378, 376, 611, 609, 988, 986, 1598, 1596, 2585, 2583, 4182, 4180, 6766, 6764, 10947, 10945, 17712, 17710, 28658, 28656, 46369, 46367, 75026, 75024, 121394, 121392, 196419, 196417, 317812, 317810
OFFSET
0,2
COMMENTS
a(2*n+1) = a(2*n) + A157725(n); a(2*n) = a(2*n-1) - 2 for n > 0. - Reinhard Zumkeller, Jul 30 2013
FORMULA
G.f. -x*(2+x^2+2*x^3+2*x) / ( (1+x)*(x^4+x^2-1) ). - R. J. Mathar, Jul 15 2013
a(n) + a(n+1) = A096748(n+2). - R. J. Mathar, Jul 15 2013
a(2n-1) - 1 = a(2n) + 1 = fib(n+1) = A000045(n+1) for n > 0. - T. D. Noe, Jul 23 2013
MATHEMATICA
LinearRecurrence[{-1, 1, 1, 1, 1}, {0, 2, 0, 3, 1}, 60] (* Harvey P. Dale, Sep 12 2018 *)
PROG
(Haskell)
import Data.List (transpose)
a226649 n = a226649_list !! n
a226649_list = concat $ transpose [a000071_list, drop 2 a001611_list]
-- Reinhard Zumkeller, Jul 30 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
V. T. Jayabalaji, Jun 14 2013
STATUS
approved