OFFSET
0,6
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..6000
B. Kim, E. Kim, and J. Lovejoy, Parity bias in partitions, European J. Combin., 89 (2020), 103159, 19 pp.
FORMULA
G.f.: Sum_{n>=1} q^(n^2+2*n)/Product_{k=1..n} (1-q^(2*k))^2.
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2^(1/2) * 5^(3/4) * (1 + sqrt(5)) * n). - Vaclav Kotesovec, Jan 14 2021
EXAMPLE
a(9) = 4 counts the partitions [8,1], [7,2], [6,3], and [5,4].
MAPLE
b:= proc(n, i, c) option remember; `if`(n=0,
`if`(c=0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j*
`if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 13 2021
MATHEMATICA
b[n_, i_, c_] := b[n, i, c] = If[n == 0,
If[c == 0, 1, 0], If[i < 1, 0, Function[t, Sum[b[n-i*j, i-1, c + j*
If[t, 1, -1]], {j, 0, Min[n/i, If[t, 1, n]]}]][OddQ[i]]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Jan 13 2021
STATUS
approved