OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 223
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1,1,0,-2,0,1).
MAPLE
1/((1-x^2)^2*(1-x^5)); seq(coeff(series(%, x, n+1), x, n), n = 0 .. 80); # modified by G. C. Greubel, Sep 09 2019
MATHEMATICA
LinearRecurrence[{0, 2, 0, -1, 1, 0, -2, 0, 1}, {1, 0, 2, 0, 3, 1, 4, 2, 5}, 80] (* Harvey P. Dale, Dec 10 2015 *)
PROG
(PARI) my(x='x+O('x^80)); Vec(1/((1-x^2)^2*(1-x^5))) \\ G. C. Greubel, Sep 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)^2*(1-x^5)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008720_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x^2)^2*(1-x^5))).list()
A008720_list(80) # G. C. Greubel, Sep 09 2019
(GAP) a:=[1, 0, 2, 0, 3, 1, 4, 2, 5];; for n in [10..80] do a[n]:=2*a[n-2]-a[n-4] +a[n-5]-2*a[n-7]+a[n-9]; od; a; # G. C. Greubel, Sep 09 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(65) onward added by G. C. Greubel, Sep 09 2019
STATUS
approved