login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097065
Interleave n+1 and n-1.
7
1, -1, 2, 0, 3, 1, 4, 2, 5, 3, 6, 4, 7, 5, 8, 6, 9, 7, 10, 8, 11, 9, 12, 10, 13, 11, 14, 12, 15, 13, 16, 14, 17, 15, 18, 16, 19, 17, 20, 18, 21, 19, 22, 20, 23, 21, 24, 22, 25, 23, 26, 24, 27, 25, 28, 26, 29, 27, 30, 28, 31, 29, 32, 30, 33, 31, 34, 32, 35, 33, 36, 34, 37, 35, 38
OFFSET
0,3
COMMENTS
Pairwise sums are abs(A023443), or n - 1 + 2*0^n. The partial sums of this sequence is A000124, with extra leading 1. Partial sums are A097066. Binomial transform is A097067.
FORMULA
G.f.: (1 - 2*x + 2*x^2)/((1 + x)*(1 - x)^2).
a(n) = (2*n - 1)/4 + 5*(-1)^n/4.
a(n) = floor((n+2)/2) - 2 * (n mod 2). - Reinhard Zumkeller, Apr 06 2015
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 2. - Wesley Ivan Hurt, Jan 10 2017
E.g.f.: ((2 + x)*cosh(x) - (3 - x)*sinh(x))/2. - Stefano Spezia, Jul 01 2023
MAPLE
A097065:=n->(2*n-1)/4 + 5*(-1)^n/4: seq(A097065(n), n=0..150); # Wesley Ivan Hurt, Jan 10 2017
MATHEMATICA
Table[(2n - 1)/4 + 5(-1)^n/4, {n, 0, 75}] (* Or *) Flatten[ Table[{n + 1, n - 1}, {n, 0, 37}]] (* Or *) CoefficientList[Series[(1 - 2x + 2x^2)/((1 + x)(1 - x)^2), {x, 0, 75}], x] (* Robert G. Wilson v, Jul 24 2004 *)
PROG
(Haskell)
import Data.List (transpose)
a097065 n = n' - 2 * m where (n', m) = divMod (n + 2) 2
a097065_list = concat $ transpose [[1 ..], [-1 ..]]
(PARI) a(n)=n\2+1-n%2*2 \\ Charles R Greathouse IV, Sep 02 2015
(Magma) [(2*n-1)/4 + 5*(-1)^n/4 : n in [0..100]]; // Wesley Ivan Hurt, Jan 10 2017
CROSSREFS
Essentially the same as A084964.
Sequence in context: A195826 A331478 A378500 * A084964 A267182 A008720
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jul 22 2004
STATUS
approved