The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097063 Expansion of (1-2*x+3*x^2)/((1+x)*(1-x)^3). 8
 1, 0, 3, 4, 9, 12, 19, 24, 33, 40, 51, 60, 73, 84, 99, 112, 129, 144, 163, 180, 201, 220, 243, 264, 289, 312, 339, 364, 393, 420, 451, 480, 513, 544, 579, 612, 649, 684, 723, 760, 801, 840, 883, 924, 969, 1012, 1059, 1104, 1153, 1200, 1251, 1300, 1353, 1404 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Partial sums of A097062. Pairwise sums are A002061. Binomial transform is essentially A007466. LINKS Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1). FORMULA G.f. : (1-2*x+3*x^2)/((1-x^2)(1-x)^2). a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). a(n) = Sum_{k=0..n} (k^2-k+1)*(-1)^(n-k). a(n) = 1/4 + (3/4)*(-1)^n + (1/2)*n^2, n >= 0. - Paolo P. Lava, Jun 10 2008 a(2n) = A058331(n); a(2n+1) = A046092(n). - R. J. Mathar, Oct 27 2008 a(n) = binomial(n+1, 2) - ceiling((n+1)/2) + 2((n+1) mod 2). - Wesley Ivan Hurt, Mar 08 2014 a(n) = 2*floor(n/2) + ceiling((n-1)^2/2). - M. Ryan Julian Jr., Sep 10 2019 a(n) = A326296(n + 1, n) for n > 0. - Andrew Howroyd, Sep 23 2019 MAPLE A097063:=n->(1/4) + (3/4)*(-1)^n + (1/2)*n^2; seq(A097063(n), n=0..50); # Wesley Ivan Hurt, Mar 08 2014 MATHEMATICA Table[(1/4) + (3/4)*(-1)^n + (1/2)*n^2, {n, 0, 50}] (* Wesley Ivan Hurt, Mar 08 2014 *) CROSSREFS A diagonal of A326296. Sequence in context: A336166 A230781 A025613 * A293569 A304825 A026476 Adjacent sequences:  A097060 A097061 A097062 * A097064 A097065 A097066 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 22 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 4 21:32 EDT 2021. Contains 346455 sequences. (Running on oeis4.)