The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025613 Numbers of form 3^i*4^j, with i, j >= 0. 5
 1, 3, 4, 9, 12, 16, 27, 36, 48, 64, 81, 108, 144, 192, 243, 256, 324, 432, 576, 729, 768, 972, 1024, 1296, 1728, 2187, 2304, 2916, 3072, 3888, 4096, 5184, 6561, 6912, 8748, 9216, 11664, 12288, 15552, 16384, 19683, 20736, 26244, 27648, 34992, 36864, 46656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Subsequence of 3-smooth numbers, cf. A003586. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020. FORMULA Sum_{n>=1} 1/a(n) = (3*4)/((3-1)*(4-1)) = 2. - Amiram Eldar, Sep 24 2020 a(n) ~ exp(sqrt(2*log(3)*log(4)*n)) / sqrt(12). - Vaclav Kotesovec, Sep 24 2020 MATHEMATICA n = 10^5; Flatten[Table[3^i*4^j, {i, 0, Log[3, n]}, {j, 0, Log[4, n/3^i]}]] // Sort (* Amiram Eldar, Sep 24 2020 *) PROG (Haskell) import Data.Set (singleton, deleteFindMin, insert) a025613 n = a025613_list !! (n-1) a025613_list = f \$ singleton 1    where f s = m : (f \$ insert (3*m) \$ insert (4*m) s')              where (m, s') = deleteFindMin s -- Reinhard Zumkeller, Jun 01 2011 (PARI) list(lim)=my(v=List(), N); for(n=0, logint(lim\1, 3), N=3^n; while(N<=lim, listput(v, N); N<<=2)); Set(v) \\ Charles R Greathouse IV, Sep 10 2015 CROSSREFS Subsequence of A003586. Sequence in context: A243185 A336166 A230781 * A356036 A097063 A293569 Adjacent sequences:  A025610 A025611 A025612 * A025614 A025615 A025616 KEYWORD easy,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 10:26 EDT 2022. Contains 356009 sequences. (Running on oeis4.)