login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008718
Expansion of g.f.: (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)).
8
1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 9, 10, 11, 12, 15, 16, 19, 20, 23, 26, 29, 30, 36, 39, 42, 45, 51, 54, 60, 63, 69, 75, 81, 84, 94, 100, 106, 112, 122, 128, 138, 144, 154, 164, 174, 180, 195, 205, 215, 225, 240, 250, 265, 275, 290, 305, 320, 330, 351, 366
OFFSET
0,5
COMMENTS
Molien series for genus-2 weight enumerators of binary self-dual codes is (1+x^18)/((1-x^2)*(1-x^8)*(1-x^12)*(1-x^24)). Exponents have been divided by 2 to get the sequence.
Or, Molien series for 4-dimensional representation of 2.{3,4,3}. This is the real 4-dimensional Clifford group of genus 2 and order 2304.
LINKS
F. J. MacWilliams, C. L. Mallows and N. J. A. Sloane, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 18 (1972), 794-805; see p. 802, col. 2, foot.
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
Index entries for linear recurrences with constant coefficients, signature (1,0,1,0,-1,0,-1,1,0,0,0,1,-1,0,-1,0,1,0,1,-1).
FORMULA
a(n) ~ (1/864)*n^3. - Ralf Stephan, Apr 29 2014
G.f.: ( 1-x^3+x^6 ) / ( (1-x+x^2) *(x^4-x^2+1) *(1+x)^2 *(x^2+1)^2 *(1+x+x^2)^2 *(x-1)^4 ). - R. J. Mathar, Dec 18 2014
MAPLE
(1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)); seq(coeff(series(%, x, n+1), x, n), n = 0..65); # modified by G. C. Greubel, Sep 09 2019
MATHEMATICA
CoefficientList[Series[(1+x^9)/((1-x)(1-x^4)(1-x^6)(1-x^12)), {x, 0, 65}], x] (* Harvey P. Dale, Apr 01 2011 *)
LinearRecurrence[{1, 0, 1, 0, -1, 0, -1, 1, 0, 0, 0, 1, -1, 0, -1, 0, 1, 0, 1, -1}, {1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 9, 10, 11, 12, 15, 16, 19, 20}, 65] (* Ray Chandler, Jul 16 2015 *)
PROG
(PARI) my(x='x+O('x^65)); Vec((1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12))) \\ G. C. Greubel, Sep 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 65); Coefficients(R!( (1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008718_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^9)/((1-x)*(1-x^4)*(1-x^6)*(1-x^12))).list()
A008718_list(65) # G. C. Greubel, Sep 09 2019
CROSSREFS
Sequence in context: A029071 A117144 A104408 * A248958 A030719 A126027
KEYWORD
nonn,easy,nice
STATUS
approved