OFFSET
0,5
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 242
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1, -1, 1, -1, 0, 0, -1, 1, 1, -1, 0, 0, -1, 1, -1, 1, 0, 0, 1, -1).
MAPLE
seq(coeff(series(1/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 09 2019
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^4)(1-x^6)(1-x^12)), {x, 0, 70}], x] (* Vincenzo Librandi, Jun 23 2013 *)
LinearRecurrence[{1, 0, 0, 1, -1, 1, -1, 0, 0, -1, 1, 1, -1, 0, 0, -1, 1, -1, 1, 0, 0, 1, -1}, {1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 8, 8, 9, 9, 12, 12, 15, 15, 18, 18, 21}, 80] (* Harvey P. Dale, Apr 03 2022 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^4)*(1-x^6)*(1-x^12))) \\ G. C. Greubel, Sep 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^4)*(1-x^6)*(1-x^12)) )); // G. C. Greubel, Sep 09 2019
(Sage)
def A008719_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)*(1-x^4)*(1-x^6)*(1-x^12))).list()
A008719_list(70) # G. C. Greubel, Sep 09 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Typo in name fixed by Vincenzo Librandi, Jun 23 2013
STATUS
approved