The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227614 Number of partitions of n into distinct parts with perimeter n-2. 2
 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 8, 9, 11, 13, 14, 17, 19, 21, 25, 28, 32, 37, 42, 47, 55, 61, 69, 78, 88, 98, 112, 124, 140, 157, 176, 196, 221, 245, 274, 305, 340, 377, 420, 465, 517, 573, 634, 702, 777, 858, 949, 1047, 1154, 1273 (list; graph; refs; listen; history; text; internal format)
 OFFSET 6,12 COMMENTS The perimeter is the sum of all parts having less than two neighbors. a(n) counts all partitions of n into distinct parts where only part 2 has two neighbors. LINKS Alois P. Heinz, Table of n, a(n) for n = 6..1000 FORMULA a(n) = A227344(n,n-2). EXAMPLE a(6) = 1: [1,2,3]. a(11) = 1: [1,2,3,5]. a(17) = 2: [1,2,3,5,6], [1,2,3,11]. a(19) = 3: [1,2,3,5,8], [1,2,3,6,7], [1,2,3,13]. a(21) = 4: [1,2,3,7,8], [1,2,3,5,10], [1,2,3,6,9], [1,2,3,15]. a(23) = 5: [1,2,3,5,12], [1,2,3,6,11], [1,2,3,7,10], [1,2,3,8,9], [1,2,3,17]. MAPLE b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<5, 0,        b(n, i-1, 0)+`if`(i>n or t=2, 0, b(n-i, i-1, t+1))))     end: a:= n-> b(n-6, n-6, 0): seq(a(n), n=6..100); MATHEMATICA b[n_, i_, t_] := b[n, i, t] = If[n==0, 1, If[i<5, 0, b[n, i-1, 0] + If[i>n || t==2, 0, b[n-i, i-1, t+1]]]]; a[n_] := b[n-6, n-6, 0]; Table[a[n], {n, 6, 100}] (* Jean-François Alcover, Feb 17 2017, translated from Maple *) CROSSREFS Cf. A227344. Sequence in context: A210718 A027191 A122522 * A236473 A029030 A008719 Adjacent sequences:  A227611 A227612 A227613 * A227615 A227616 A227617 KEYWORD nonn AUTHOR Alois P. Heinz, Jul 17 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 15:21 EDT 2021. Contains 345165 sequences. (Running on oeis4.)