login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227613
Smallest primes a(n) such that 1 + a(1), 1 + a(1) + a(1)*a(2), ..., 1 + a(1) + a(1)*a(2) + ... + a(1)*a(2)*a(3)*...*a(n) are prime numbers with a(1) = 2 and a(i) < a(i+1).
0
2, 5, 7, 11, 41, 113, 149, 167, 173, 257, 281, 317, 431, 491, 839, 857, 953, 977, 1031, 1091, 2909, 3041, 3191, 3467, 4073, 4721, 5381, 6047, 6791, 7127, 8243, 8387, 9743, 10709, 11831, 12011, 12119, 13163, 14249, 14633, 17891, 22157, 22397, 23789, 24419, 25469
OFFSET
1,1
COMMENTS
The sequence of the primes 1 + sum of product of a(i) from i = 1 to n such that a(i) < a(i+1) is given by A225236.
EXAMPLE
a(1) = 2 because 1 + a(1) = 3 = A225236(1);
a(2) = 5 because 1 + a(1) + a(1)*a(2) = 1 + 2 + 2*5 = 13 = A225236(2);
a(3) = 7 because 1 + a(1) + a(1)*a(2) + a(1)*a(2)*a(3) = 1 + 2 + 2*5 + 2*5*7 = 83 = A225236(3).
MAPLE
with(numtheory) : a1:=3:p0:=3:p1:=2:k0:=2:for n from 1 to 50 do:ii:=0:for k from k0 to 10^6 while(ii=0) do:p:=ithprime(k):pp:=p1*p: ppp:=p0+pp:if type(ppp, prime)=true then p0:=ppp:p1:=pp: k0:=k+1:ii:=1:printf(`%d, `, p):else fi:od:od:
CROSSREFS
Cf. A225236.
Sequence in context: A131102 A235468 A229209 * A168031 A260108 A265791
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 19 2013
STATUS
approved