OFFSET
1,2
COMMENTS
See A073101 for the 4/n conjecture due to Erdős and Straus.
LINKS
Jud McCranie, Table of n, a(n) for n = 1..500
Christian Elsholtz, Sums Of k Unit Fractions, Trans. Amer. Math. Soc. 353 (2001), 3209-3227.
David Eppstein, Algorithms for Egyptian Fractions
David Eppstein, Ten Algorithms for Egyptian Fractions, Wolfram Library Archive.
Ron Knott, Egyptian Fractions
Eric Weisstein's World of Mathematics, Egyptian Fraction
EXAMPLE
a(1)=1 because 1 = 1/2 + 1/3 + 1/6;
a(2)=6 because 1/2 = 1/3 + 1/7 + 1/42 = 1/3 + 1/8 + 1/24 = 1/3 + 1/9 + 1/18 = 1/3 + 1/10 + 1/15 = 1/4 + 1/5 + 1/20 = 1/4 + 1/6 + 1/12;
a(3)=15 because 1/3 = 1/x + 1/y + 1/z presented as {x,y,z}: {4,13,156}, {4,14,84}, {4,15,60}, {4,16,48}, {4,18,36}, {4,20,30}, {4,21,28}, {5,8,120}, {5,9,45}, {5,10,30}, {5,12,20}, {6,7,42}, {6,8,24}, {6,9,18}, {6,10,15}; etc.
MATHEMATICA
f[n_] := Length@ Solve[1/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 70]
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jul 17 2013
STATUS
approved