login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227609
Determinant of the (p_n-1)/2 X (p_n-1)/2 matrix with (i,j)-entry being the Legendre symbol((i^2+j^2)/p_n), where p_n is the n-th prime.
9
-1, 1, -4, -16, -27, 441, -1024, -1024, 34445, -13778944, 82719025, 48841786125, -67649929216, -564926611456, -153908556861703, -25481517249593344, 2456184022341328125, -399780402627654713344, -14448269983744, -214168150727821285287075
OFFSET
2,3
COMMENTS
Conjecture: p_n never divides a(n), and moreover -a(n) is a quadratic residue mod p_n.
Zhi-Wei Sun also made the following conjecture:
Let p be any odd prime. For each integer d let S(d,p) be the determinant of the (p-1)/2 X (p-1)/2 matrix whose (i,j)-entry is the Legendre symbol ((i^2+d*j^2)/p). If d is a quadratic residue mod p, then so is -S(d,p). If d is a quadratic non-residue mod p, then we have S(d,p) = 0.
These were proved in version 9 of arXiv:1308.2900 (2018). In addition, the author has the following new conjecture.
Conjecture: For any prime p == 3 (mod 4), the number -S(1,p) is a positive square divisible by 2^((p-3)/2), i.e., -S(1,p) = (2^((p-3)/4)*m)^2 for some positive integer m. - Zhi-Wei Sun, Sep 09 2018
LINKS
Zhi-Wei Sun, On some determinants with Legendre symbol entries, preprint, arXiv:1308.2900 [math.NT], 2013-2019.
EXAMPLE
a(2) = -1 since the Legendre symbol ((1^2 + 1^2)/3) is -1.
MAPLE
with(numtheory): with(LinearAlgebra):
a:= n-> Determinant(Matrix((ithprime(n)-1)/2, (i, j)->
jacobi(i^2+j^2, ithprime(n)))):
seq(a(n), n=2..20); # Alois P. Heinz, Jul 18 2013
MATHEMATICA
a[n_]:=Det[Table[JacobiSymbol[i^2+j^2, Prime[n]], {i, 1, (Prime[n]-1)/2}, {j, 1, (Prime[n]-1)/2}]]
Table[a[n], {n, 2, 20}]
PROG
(PARI) a(n) = my(p=prime(n)); matdet(matrix((p-1)/2, (p-1)/2, i, j, kronecker(i^2+j^2, p))); \\ Michel Marcus, Aug 25 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Jul 17 2013
STATUS
approved