login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227609 Determinant of the (p_n-1)/2-by-(p_n-1)/2 matrix with (i,j)-entry being the Legendre symbol((i^2+j^2)/p_n), where p_n is the n-th prime. 9
-1, 1, -4, -16, -27, 441, -1024, -1024, 34445, -13778944, 82719025, 48841786125, -67649929216, -564926611456, -153908556861703, -25481517249593344, 2456184022341328125, -399780402627654713344, -14448269983744, -214168150727821285287075 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,3

COMMENTS

Conjecture: p_n never divides a(n),  and moreover -a(n) is a quadratic residue mod p_n.

Zhi-Wei Sun also made the following conjecture:

  Let p be any odd prime. For each integer d let S(d,p) be the determinant of the (p-1)/2-by-(p-1)/2 matrix whose (i,j)-entry is the Legendre symbol ((i^2+d*j^2)/p). If d is a quadratic residue mod p, then so is -S(d,p). If d is a quadratic non-residue mod p, then we have S(d,p) = 0.

These were proved in version 9 of arXiv:1308.2900 (2018). In addition, the author has the following new conjecture.

Conjecture: For any prime p == 3 (mod 4), the number -S(1,p) is a positive square divisible by 2^((p-3)/2), i.e., -S(1,p) = (2^((p-3)/4)*m)^2 for some positive integer m. - Zhi-Wei Sun, Sep 09 2018

LINKS

Alois P. Heinz, Table of n, a(n) for n = 2..100

Zhi-Wei Sun, On some determinants with Legendre symbol entries, preprint, arXiv:1308.2900 [math.NT], 2013-2019.

Zhi-Wei Sun, Is -det[Legendre(i^2+j^2,p)]_{i,j=1,...,(p-1)/2} always a square for each prime p == 3 (mod 4)?, Question 310192 in MathOverflow, Sept. 9, 2018.

EXAMPLE

a(2) = -1 since the Legendre symbol ((1^2+1^2)/3) is -1.

MAPLE

with(numtheory): with(LinearAlgebra):

a:= n-> Determinant(Matrix((ithprime(n)-1)/2, (i, j)->

        jacobi(i^2+j^2, ithprime(n)))):

seq(a(n), n=2..20);  # Alois P. Heinz, Jul 18 2013

MATHEMATICA

a[n_]:=Det[Table[JacobiSymbol[i^2+j^2, Prime[n]], {i, 1, (Prime[n]-1)/2}, {j, 1, (Prime[n]-1)/2}]]

Table[a[n], {n, 2, 20}]

CROSSREFS

Cf. A179071, A179072, A227968, A227971.

Sequence in context: A271936 A046358 A046366 * A219338 A275211 A046361

Adjacent sequences:  A227606 A227607 A227608 * A227610 A227611 A227612

KEYWORD

sign

AUTHOR

Zhi-Wei Sun, Jul 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 03:21 EDT 2019. Contains 328335 sequences. (Running on oeis4.)