login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179071 Chapman's "evil" determinants I. 6
1, -2, 1, 1, -18, -4, 1, 1, -70, 1, -882, -32, 1, 1, -182, 1, -29718, 1, 1, -1068, 1, 1, -500, -5604, -4030, 1, 1, -8890182, -776, 1, 1, -1744, 1, -113582, 1, -4832118, 1, 1, -1118, 1, -1111225770, 1, -1764132, -11018, 1, 1, 1, 1, -20000849130, -23156, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

Determinant of the (k+1)X(k+1) matrix with (i,j)-entry L((j-i)/p), where L(./p) denotes the Legendre symbol modulo p and p = p_n = 2k+1 is the n-th prime.

Guy says "Chapman has a number of conjectures which concern the distribution of quadratic residues." One is that if p_n == 3 (mod 4), then a(n) = 1. Chapman also has a conjecture if p_n == 1 (mod 4), involving the fundamental unit and class number of the quadratic field Q(sqrt(p)). (Added Aug 23 2011: Both conjectures have been proved by Vsemirnov.)

It appears that a(n) is negative and even, if p_n == 1 (mod 4); see A179073. (Added Aug 28 2011: This conjecture has also been proved by Vsemirnov.)

REFERENCES

Richard Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, Section F5.

LINKS

Table of n, a(n) for n=2..52.

Robin Chapman, Determinants of Legendre symbol matrices, Acta Arith. 115 (2004), 231-244.

Robin Chapman, Steinitz classes of unimodular lattices, European J. Combin. 25 (2004), 487-493.

Robin Chapman (2009), My evil determinant problem

Maxim Vsemirnov (2011), On R. Chapman's ``evil determinant'': case p=1 (mod 4), arXiv:1108.4031 [math.NT], 2011-2012.

M. Vseminov, On the evaluation of R. Chapman's "evil determinant", Linear Algebra Appl. 436(2012), 4101-4106.

Wikipedia, Legendre symbol

EXAMPLE

p_3 = 5 = 2*2+1 and the (2+1)-by-(2+1) matrix (L((j-i)/5)) is

0, 1, -1

1, 0, 1

-1, 1, 0

which has determinant -2, so a(3) = -2.

MATHEMATICA

a[n_] := Module[{p, k}, p = Prime[n]; k = (p-1)/2; Det @ Table[JacobiSymbol[ j-i, p], {i, 1, k+1}, {j, 1, k+1}]];

Table[a[n], {n, 2, 52}] (* Jean-Fran├žois Alcover, Nov 18 2018 *)

PROG

(PARI) a(n) = my(p=prime(n), k=(p+1)/2); matdet(matrix(k, k, i, j, kronecker(j-i, p))); \\ Michel Marcus, Aug 25 2021

CROSSREFS

Cf. A179072 (Chapman's "evil" determinants II), A179073 (A179071 for p == 1 (mod 4)), A179074 (A179072 for p == 1 (mod 4)).

Sequence in context: A174918 A154991 A090163 * A124001 A174966 A157453

Adjacent sequences:  A179068 A179069 A179070 * A179072 A179073 A179074

KEYWORD

sign

AUTHOR

Jonathan Sondow and Wadim Zudilin, Jun 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 02:41 EST 2021. Contains 349344 sequences. (Running on oeis4.)