login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157453
A general recursion sequence:m=8:Half tent function: f(n,m)== Min[1 + Floor[m/2], 1 + Floor[(n - m)/2]]; Recursion: A(n,k,m)=(m*(n - k) + 1)*A(n - 1, k - 1, m) + (m*k + 1)*A(n - 1, k, m) + m*f(n, k)*A(n - 2, k - 1, m)
0
1, 1, 1, 1, 2, 1, 1, 19, 19, 1, 1, 188, 630, 188, 1, 1, 1717, 15258, 15258, 1717, 1, 1, 15494, 316047, 762900, 316047, 15494, 1, 1, 139495, 6008053, 29502051, 29502051, 6008053, 139495, 1, 1, 1255520, 109096108, 986409824, 1953238566, 986409824
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 4, 40, 1008, 33952, 1425984, 71299200, 4146761472, 274256650752,
20361340339200,...},
What is unique about this recursion sequence is that it starts off giving sequences near the Eulerian numbers and MacMahon numbers at m=1,2, but at m=7,8 has gone down to a sequence that starts off like the binomial.
FORMULA
m=8:Half tent function:
f(n,m)== Min[1 + Floor[m/2], 1 + Floor[(n - m)/2]];
Recursion: A(n,k,m)=(m*(n - k) + 1)*A(n - 1, k - 1, m) +
(m*k + 1)*A(n - 1, k, m) +
m*f(n, k)* A(n - 2, k - 1, m)
EXAMPLE
{1},
{1, 1},
{1, 2, 1},
{1, 19, 19, 1},
{1, 188, 630, 188, 1},
{1, 1717, 15258, 15258, 1717, 1},
{1, 15494, 316047, 762900, 316047, 15494, 1},
{1, 139495, 6008053, 29502051, 29502051, 6008053, 139495, 1},
{1, 1255520, 109096108, 986409824, 1953238566, 986409824, 109096108, 1255520, 1},
{1, 11299753, 1927314436, 30054019316, 105135691870, 105135691870, 30054019316, 1927314436, 11299753, 1},
{1, 101697866, 33518917677, 862952943480, 4957907335378, 8652378550396, 4957907335378, 862952943480, 33518917677, 101697866, 1}
MATHEMATICA
Clear[A, a0, b0, n, k, m, f];
f[n_, k_] := Min[1 + Floor[m/2], 1 + Floor[(n - m)/2]];
A[n_, 0, m_] := 1; A[n_, n_, m_] := 1;
A[n_, k_, m_] := (m*(n - k) + 1)*A[n - 1, k - 1, m] + (m*k + 1)*A[n - 1, k, m] + m*f[n, k]*A[n - 2, k - 1, m];
Table[A[n, k, m], {m, 0, 10}, {n, 0, 10}, {k, 0, n}];
Table[Flatten[Table[Table[A[n, k, m], {k, 0, n}], {n, 0, 10}]], {m, 0, 10}]
Table[Table[Sum[A[n, k, m], {k, 0, n}], {n, 0, 10}], {m, 0, 10}];
CROSSREFS
Sequence in context: A179071 A124001 A174966 * A174174 A156889 A172177
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 01 2009
STATUS
approved