The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157456 Expansion of x * (1 - x) / (1 - 16*x + x^2). 21
 1, 15, 239, 3809, 60705, 967471, 15418831, 245733825, 3916322369, 62415424079, 994730462895, 15853271982241, 252657621252961, 4026668668065135, 64174041067789199, 1022757988416562049, 16299953773597203585, 259776502389138695311, 4140124084452621921391 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Positive values of x (or y) satisfying x^2 - 16xy + y^2 + 14 = 0. - Colin Barker, Feb 11 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. Index entries for linear recurrences with constant coefficients, signature (16,-1). FORMULA G.f.: x*(1-x) / ( 1-16*x+x^2 ). - R. J. Mathar, Oct 31 2011 a(n) = 16*a(n-1)-a(n-2). - Colin Barker, Feb 11 2014 a(n) = (1/18)*(9-sqrt(63))*(1+(8+sqrt(63))^(2*n-1))/(8+sqrt(63))^(n-1). [Bruno Berselli, Feb 25 2014] a(n) = sqrt(2+(8-3*sqrt(7))^(1+2*n)+(8+3*sqrt(7))^(1+2*n))/(3*sqrt(2)). - Gerry Martens, Jun 06 2015 a(n) = A077412(n-1) - A077412(n-2). - R. J. Mathar, Feb 05 2020 MAPLE f:= gfun:-rectoproc({a(n)=16*a(n-1)-a(n-2), a(1)=1, a(2)=15}, a(n), remember): map(f, [\$1..30]); # Robert Israel, Jul 07 2015 MATHEMATICA CoefficientList[Series[(1 - x)/(1 - 16 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *) LinearRecurrence[{16, -1}, {1, 15}, 20] (* Harvey P. Dale, Sep 17 2019 *) PROG (Magma) I:=[1, 15]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014 CROSSREFS Cf. A159678. Cf. similar sequences listed in A238379. Sequence in context: A209118 A093745 A071811 * A343527 A097262 A158557 Adjacent sequences: A157453 A157454 A157455 * A157457 A157458 A157459 KEYWORD nonn,easy AUTHOR Paul Weisenhorn, Mar 01 2009 EXTENSIONS New name (using the g.f. by R. J. Mathar) from Joerg Arndt, Jun 06 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 00:27 EDT 2024. Contains 371696 sequences. (Running on oeis4.)