login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157456 Expansion of x*(1-x) / ( 1 - 16*x + x^2 ). 21
1, 15, 239, 3809, 60705, 967471, 15418831, 245733825, 3916322369, 62415424079, 994730462895, 15853271982241, 252657621252961, 4026668668065135, 64174041067789199, 1022757988416562049, 16299953773597203585, 259776502389138695311, 4140124084452621921391 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Previous name was: The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: C*n(j)+1 = a(j)A^2; (C+2)*n(j)+1 = b(j)A^2; with C, n(j), a(j), b(j) positive integer elements. The example above is the a(j) recurrence for C=7. The general form above, with C=7, is 7*n(j)+1=a(j)A^2 and 9*n(j)+1=b(j)A^2, leading to the single equation 9*a(j)A^2 - 7b(j)A^2 = 2. The single equation in general form is (C+2)*a(t)A^2 - C*b(t)A^2 = 2.

.C a-seque b-seque n-seque

01 A001835 A001834 A045899

02 A001653 A002315 A098602

03 A070997 A057080 -------

04 A072256 A054320 -------

05 A077417 A077416 -------

06 A001570 A028230 -------

07 ------- ------- -------

08 A007805 A049629 -------

09 A075839 A083043 -------

10 A157014 A133283 -------

11 ------- ------- -------

12 A153111 ------- -------

For all higher values of C, no sequences could be found in the list.

Positive values of x (or y) satisfying x^2 - 16xy + y^2 + 14 = 0. - Colin Barker, Feb 11 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.

Index entries for linear recurrences with constant coefficients, signature (16,-1).

FORMULA

The a(j) recurrence is a(1)=1, a(2)=2*C+1, a(t+2)=(2*C+2)*a(t+1)-a(t), resulting in a(j) terms 1, 2*C+1, 4*CA^2 +6*C+1;

the b(j) recurrence is b(1)=1, b(2)=2*C+3, b(t+2)=(2*C+2)*b(t+1)-b(t), resulting in b(j) terms 1, 2*C+3, 4*CA^2 +10*C+5;

the n(j) recurrence is n(1)=0, n(2)=4*C+4, n(3)=(4*CA^2 +8*C+3)*n(2), n(t+3)=(4*CA^2 +8*C+3)*(n(t+2)-n(t+1)) + n(t), resulting in n(j) terms 0, 4*C+4, 16*CA^3 +48*CA^2 +44*C+12.

Other forms of the recurrence are

n(t+3) = (4*CA^2 + 8*C+2)*n(t+2) - n(t+1) + n(2)

or

n(t)=(b(t)A^2 - a(t)A^2 )/2.

G.f.: -x*(-1+x) / ( 1-16*x+x^2 ). - R. J. Mathar, Oct 31 2011

a(n) = 16*a(n-1)-a(n-2). - Colin Barker, Feb 11 2014

a(n) = (1/18)*(9-sqrt(63))*(1+(8+sqrt(63))^(2*n-1))/(8+sqrt(63))^(n-1). [Bruno Berselli, Feb 25 2014]

a(n) = sqrt(2+(8-3*sqrt(7))^(1+2*n)+(8+3*sqrt(7))^(1+2*n))/(3*sqrt(2)). - Gerry Martens, Jun 06 2015

a(n) = A077412(n-1) - A077412(n-2). - R. J. Mathar, Feb 05 2020

MAPLE

f:= gfun:-rectoproc({a(n)=16*a(n-1)-a(n-2), a(1)=1, a(2)=15}, a(n), remember):

map(f, [$1..30]); # Robert Israel, Jul 07 2015

MATHEMATICA

CoefficientList[Series[(1 - x)/(1 - 16 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)

LinearRecurrence[{16, -1}, {1, 15}, 20] (* Harvey P. Dale, Sep 17 2019 *)

PROG

(Magma) I:=[1, 15]; [n le 2 select I[n] else 16*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014

CROSSREFS

Cf. A159678.

Cf. similar sequences listed in A238379.

Sequence in context: A209118 A093745 A071811 * A343527 A097262 A158557

Adjacent sequences: A157453 A157454 A157455 * A157457 A157458 A157459

KEYWORD

nonn,easy,uned

AUTHOR

Paul Weisenhorn, Mar 01 2009

EXTENSIONS

New name (using the g.f. by R. J. Mathar) from Joerg Arndt, Jun 06 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 07:38 EST 2022. Contains 358691 sequences. (Running on oeis4.)