OFFSET
0,1
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: 15*(1 + 13*x + 16*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(15))*Pi/sqrt(15) + 1)/30.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(15))*Pi/sqrt(15) + 1)/30. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {15, 240, 915}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
225*Range[0, 40]^2+15 (* Harvey P. Dale, Apr 06 2019 *)
PROG
(Magma) I:=[15, 240, 915]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
(PARI) for(n=0, 22, print1(225*n^2 + 15", ")); \\ Vincenzo Librandi, Feb 14 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 21 2009
EXTENSIONS
Comment rewritten, a(0) added by R. J. Mathar, Oct 16 2009
STATUS
approved