login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158559 a(n) = 225*n^2 - 15. 2
210, 885, 2010, 3585, 5610, 8085, 11010, 14385, 18210, 22485, 27210, 32385, 38010, 44085, 50610, 57585, 65010, 72885, 81210, 89985, 99210, 108885, 119010, 129585, 140610, 152085, 164010, 176385, 189210, 202485, 216210, 230385, 245010, 260085 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The identity (30*n^2 - 1)^2 - (225*n^2 - 15) * (2*n)^2 = 1 can be written as A158560(n)^2 - a(n) * A005843(n)^2 = 1.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: 15*x*(-14 - 17*x + x^2)/(x-1)^3.

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

MATHEMATICA

15(15Range[40]^2-1) (* or *) LinearRecurrence[{3, -3, 1}, {210, 885, 2010}, 40] (* Harvey P. Dale, Jan 24 2012 *)

PROG

(Magma) I:=[210, 885, 2010]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 14 2012

(PARI) for(n=1, 40, print1(225*n^2 - 15", ")); \\ Vincenzo Librandi, Feb 05 2012

CROSSREFS

Cf. A005843, A158560.

Sequence in context: A118279 A163263 A009127 * A235248 A235241 A046302

Adjacent sequences: A158556 A158557 A158558 * A158560 A158561 A158562

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Mar 21 2009

EXTENSIONS

Comment rewritten by R. J. Mathar, Oct 16 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 20:01 EST 2022. Contains 358362 sequences. (Running on oeis4.)