Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Mar 09 2023 02:43:56
%S 210,885,2010,3585,5610,8085,11010,14385,18210,22485,27210,32385,
%T 38010,44085,50610,57585,65010,72885,81210,89985,99210,108885,119010,
%U 129585,140610,152085,164010,176385,189210,202485,216210,230385,245010,260085,275610,291585,308010
%N a(n) = 225*n^2 - 15.
%C The identity (30*n^2 - 1)^2 - (225*n^2 - 15) * (2*n)^2 = 1 can be written as A158560(n)^2 - a(n) * A005843(n)^2 = 1.
%H Vincenzo Librandi, <a href="/A158559/b158559.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: 15*x*(-14 - 17*x + x^2)/(x-1)^3.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F From _Amiram Eldar_, Mar 09 2023: (Start)
%F Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(15))*Pi/sqrt(15))/30.
%F Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(15))*Pi/sqrt(15) - 1)/30. (End)
%t 15(15Range[40]^2-1) (* or *) LinearRecurrence[{3,-3,1},{210,885,2010},40] (* _Harvey P. Dale_, Jan 24 2012 *)
%o (Magma) I:=[210, 885, 2010]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, Feb 14 2012
%o (PARI) for(n=1, 40, print1(225*n^2 - 15", ")); \\ _Vincenzo Librandi_, Feb 05 2012
%Y Cf. A005843, A158560.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Mar 21 2009
%E Comment rewritten by _R. J. Mathar_, Oct 16 2009