login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073101
Number of integer solutions (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.
32
0, 0, 1, 1, 2, 5, 5, 6, 4, 9, 7, 15, 4, 14, 33, 22, 4, 21, 9, 30, 25, 22, 19, 45, 10, 17, 25, 36, 7, 72, 17, 62, 27, 22, 59, 69, 9, 29, 67, 84, 7, 77, 12, 56, 87, 39, 32, 142, 16, 48, 46, 53, 13, 82, 92, 124, 37, 30, 25, 178, 11, 34, 147, 118, 49, 94, 15, 67, 51, 176, 38, 191, 7
OFFSET
1,5
COMMENTS
In 1948 Erdős and Straus conjectured that for any positive integer n >= 2 the equation 4/n = 1/x + 1/y + 1/z has a solution with positive integers x, y and z (without the additional requirement 0 < x < y < z). All of the solutions can be printed by removing the comment symbols from the Mathematica program. For the solution (x,y,z) having the largest z value, see (A075245, A075246, A075247). See A075248 for Sierpiński's conjecture for 5/n.
See (A257839, A257840, A257841) for the lexicographically smallest solutions, and A257843 for the differences between these and those with largest z-value. - M. F. Hasler, May 16 2015
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000, (corrected by Peter Luschny, Jan 19 2019)
Christian Elsholtz, Sums Of k Unit Fractions, Trans. Amer. Math. Soc. 353 (2001), 3209-3227.
Paul Erdős, Az 1/z_1 + 1/z_2 + ... + 1/z_n = a/b egyenlet egész számú megoldásairól, (On a Diophantine equation), Mat. Lapok, 1:192-210, 1050. Math. Rev. 13:208b.
Eric Weisstein's World of Mathematics, Egyptian Fraction
EXAMPLE
a(5)=2 because there are two solutions: 4/5 = 1/2 + 1/4 + 1/20 and 4/5 = 1/2 + 1/5 + 1/10.
MAPLE
A:= proc(n)
local x, t, p, q, ds, zs, ys, js, tot, j;
tot:= 0;
for x from 1+floor(n/4) to ceil(3*n/4)-1 do
t:= 4/n - 1/x;
p:= numer(t);
q:= denom(t);
ds:= convert(select(d -> (d < q) and d + q mod p = 0,
numtheory:-divisors(q^2)), list);
ys:= map(d -> (d+q)/p, ds);
zs:= map(d -> (q^2/d+q)/p, ds);
js:= select(j -> ys[j] > x, [$1..nops(ds)]);
tot:= tot + nops(js);
od;
tot;
end proc:
seq(A(n), n=2..100); # Robert Israel, Aug 22 2014
MATHEMATICA
(* download Egypt.m from D. Eppstein's site and put it into MyOwn directory underneath Mathematica\AddOns\StandardPackages *) Needs["MyOwn`Egypt`"]; Table[ Length[ EgyptianFraction[4/n, Method -> Lexicographic, MaxTerms -> 3, MinTerms -> 3, Duplicates -> Disallow, OutputFormat -> Plain]], {n, 5, 80}]
m = 4; For[lst = {}; n = 2, n <= 100, n++, cnt = 0; xr = n/m; If[IntegerQ[xr], xMin = xr + 1, xMin = Ceiling[xr]]; If[IntegerQ[3xr], xMax = 3xr - 1, xMax = Floor[3xr]]; For[x = xMin, x <= xMax, x++, yr = 1/(m/n - 1/x); If[IntegerQ[yr], yMin = yr + 1, yMin = Ceiling[yr]]; If[IntegerQ[2yr], yMax = 2yr + 1, yMax = Ceiling[2yr]]; For[y = yMin, y <= yMax, y++, zr = 1/(m/n - 1/x - 1/y); If[y > x && zr > y && IntegerQ[zr], z = zr; cnt++; (*Print[n, " ", x, " ", y, " ", z]*)]]]; AppendTo[lst, cnt]]; lst
f[n_] := Length@ Solve[4/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 72, 2] (* Robert G. Wilson v, Jul 17 2013 *)
PROG
(Haskell)
import Data.Ratio ((%), numerator, denominator)
a073101 n = length [(x, y) |
x <- [n `div` 4 + 1 .. 3 * n `div` 4], let y' = recip $ 4%n - 1%x,
y <- [floor y' + 1 .. floor (2*y') + 1], let z' = recip $ 4%n - 1%x - 1%y,
denominator z' == 1 && numerator z' > y && y > x]
-- Reinhard Zumkeller, Jan 03 2011
(PARI) A073101(n)=sum(c=n\4+1, n*3\4, sum(b=c+1, ceil(2/(t=4/n-1/c))-1, numerator(t-1/b)==1)) \\ M. F. Hasler, May 15 2015
CROSSREFS
Cf. A192787 (# distinct solutions with x <= y <= z).
Sequence in context: A340777 A205444 A270705 * A235526 A130851 A130856
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Aug 18 2002
EXTENSIONS
Edited by T. D. Noe, Sep 10 2002
Extended to offset 1 with a(1) = 0 by M. F. Hasler, May 16 2015
STATUS
approved