login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340777
a(n) is the first prime p such that p*2^n+q*3^n and p*3^n+q*2^n are both prime, where q is the prime following p.
1
2, 5, 5, 5, 67, 5, 7, 19, 107, 61, 67, 7, 5, 103, 263, 13, 83, 197, 17, 1097, 709, 103, 2731, 367, 271, 353, 1951, 43, 1109, 113, 457, 131, 67, 197, 1427, 199, 379, 7, 1901, 367, 3889, 8387, 97, 367, 2297, 613, 89, 6263, 2017, 127, 2647, 911, 8831, 45949, 4051, 2671, 2927, 883, 4423, 4027, 11
OFFSET
0,1
LINKS
EXAMPLE
a(3) = 5 because 5*2^3+7*3^3 = 229 and 5*3^n+7*2^n = 191 are prime.
MAPLE
f:= proc(n) local p, q;
q:= 2;
do
p:= q; q:= nextprime(q);
until isprime(p*2^n+q*3^n) and isprime(p*3^n + q*2^n);
p
end proc:
map(f, [$0..100]);
MATHEMATICA
fpp[n_]:=Module[{p=2}, While[!PrimeQ[p 2^n+NextPrime[p]3^n]|| !PrimeQ[p 3^n+ NextPrime[ p]2^n], p=NextPrime[p]]; p]; Array[fpp, 70, 0] (* Harvey P. Dale, Jun 29 2021 *)
PROG
(PARI) a(n) = my(p=2, q=nextprime(p+1)); while(! (isprime(p*2^n+q*3^n) && isprime(p*3^n + q*2^n)), p=q; q=nextprime(p+1)); p; \\ Michel Marcus, Jan 21 2021
CROSSREFS
Cf. A340694.
Sequence in context: A082086 A082084 A094236 * A205444 A270705 A073101
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jan 21 2021
STATUS
approved