login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340775
G.f.: Sum_{n>=0} x^n/(1 - x^2*(1+x)^n).
1
1, 1, 2, 2, 4, 5, 10, 16, 32, 61, 127, 270, 600, 1378, 3274, 8021, 20245, 52535, 140014, 382745, 1072025, 3073443, 9010934, 26994231, 82563483, 257634875, 819648796, 2656956702, 8770406923, 29464217659, 100689885448, 349849796512
OFFSET
0,3
COMMENTS
The g.f. of this sequence is motivated by the following identity:
Sum_{n>=0} p^n/(1 - q*r^n) = Sum_{n>=0} q^n/(1 - p*r^n) = Sum_{n>=0} p^n*q^n*r^(n^2)*(1 - p*q*r^(2*n))/((1 - p*r^n)*(1 - q*r^n)) ;
here, p = x, q = x^2, and r = (1+x).
FORMULA
G.f.: Sum_{n>=0} x^n / (1 - x^2*(1+x)^n).
G.f.: Sum_{n>=0} x^(2*n) / (1 - x*(1+x)^n).
G.f.: Sum_{n>=0} x^(3*n) * (1+x)^(n^2) * (1 - x^3*(1+x)^(2*n)) / ((1 - x*(1+x)^n)*(1 - x^2*(1+x)^n)).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 5*x^5 + 10*x^6 + 16*x^7 + 32*x^8 + 61*x^9 + 127*x^10 + 270*x^11 + 600*x^12 + 1378*x^13 + 3274*x^14 + 8021*x^15 + ...
where
A(x) = 1/(1 - x^2) + x/(1 - x^2*(1+x)) + x^2/(1 - x^2*(1+x)^2) + x^3/(1 - x^2*(1+x)^3) + x^4/(1 - x^2*(1+x)^4) + x^5/(1 - x^2*(1+x)^5) + ...
also
A(x) = 1/(1-x) + x^2/(1 - x*(1+x)) + x^4/(1 - x*(1+x)^2) + x^6/(1 - x*(1+x)^3) + x^8/(1 - x*(1+x)^4) + x^10/(1 - x*(1+x)^5) + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, x^m /(1 - x^2*(1+x)^m +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, n, x^(2*m) /(1 - x*(1+x)^m +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A340776.
Sequence in context: A054538 A238020 A095020 * A290436 A338048 A127825
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 20 2021
STATUS
approved