login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235526
G.f. satisfies: A(x) = Sum_{n>=0} [A(x)^n (mod 3)]*x^n.
1
1, 1, 2, 5, 5, 6, 6, 3, 2, 17, 11, 10, 13, 10, 12, 12, 6, 6, 18, 9, 6, 9, 6, 6, 6, 3, 2, 53, 29, 22, 31, 22, 24, 24, 12, 10, 37, 28, 32, 32, 23, 24, 24, 12, 12, 30, 18, 18, 18, 12, 12, 12, 6, 6, 54, 27, 18, 27, 18, 18, 18, 9, 6, 27, 18, 18, 18, 12, 12, 12, 6, 6, 18, 9, 6, 9, 6, 6, 6, 3, 2, 161
OFFSET
0,3
LINKS
FORMULA
a(3^n) = 2*3^n - 1 for n>=0.
a(2*3^n) = 2*3^n for n>=0.
a(3^n-1) = 2 for n>=1.
a(3^n+1) = 3^n + 2 for n>=1.
a(n) == binomial(2*n,n)/(n+1) (mod 3); i.e., a(n) is congruent to Catalan number A000108(n) modulo 3.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 5*x^4 + 6*x^5 + 6*x^6 + 3*x^7 + 2*x^8 + 17*x^9 + 11*x^10 + 10*x^11 + 13*x^12 +...
The table of coefficients in A(x)^n reduced modulo 3 begins:
n=0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=1: [1, 1, 2, 2, 2, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, ...];
n=2: [1, 2, 2, 2, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...];
n=3: [1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, ...];
n=4: [1, 1, 2, 0, 0, 2, 1, 1, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, ...];
n=5: [1, 2, 2, 0, 2, 2, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...];
n=6: [1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=7: [1, 1, 2, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=8: [1, 2, 2, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];
n=9: [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, ...];
n=10:[1, 1, 2, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, ...];
n=11:[1, 2, 2, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, ...];
n=12:[1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, ...];
n=13:[1, 1, 2, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 1, ...];
n=14:[1, 2, 2, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 1, ...];
n=15:[1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, ...];
n=16:[1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 1, ...];
n=17:[1, 2, 2, 1, 1, 1, 0, 0, 0, 0, 2, 2, 1, 1, 1, 0, 0, 0, 1, ...];
n=18:[1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, ...];
n=19:[1, 1, 2, 2, 2, 0, 0, 0, 2, 1, 1, 2, 2, 2, 0, 0, 0, 1, 0, ...];
n=20:[1, 2, 2, 2, 0, 0, 0, 2, 2, 1, 2, 2, 2, 0, 0, 0, 1, 1, 0, ...];
n=21:[1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, ...];
n=22:[1, 1, 2, 0, 0, 2, 1, 1, 0, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0, ...];
n=23:[1, 2, 2, 0, 2, 2, 1, 0, 0, 1, 2, 2, 0, 1, 1, 2, 0, 0, 0, ...];
n=24:[1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, ...];
n=25:[1, 1, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, ...];
n=26:[1, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0],...];
n=27:[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],...]; ...
where the antidiagonal sums form this sequence.
PROG
(PARI) {MOD(F, n)=local(V=Vec(F)); sum(k=0, #V-1, (V[k+1]%n)*x^k)+O(x^#V)}
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(k=1, n, x^k*MOD((A+x*O(x^n))^k, 3))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A205444 A270705 A073101 * A130851 A130856 A004095
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 23 2014
STATUS
approved