login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = Sum_{n>=0} [A(x)^n (mod 3)]*x^n.
1

%I #6 Jan 23 2014 19:49:48

%S 1,1,2,5,5,6,6,3,2,17,11,10,13,10,12,12,6,6,18,9,6,9,6,6,6,3,2,53,29,

%T 22,31,22,24,24,12,10,37,28,32,32,23,24,24,12,12,30,18,18,18,12,12,12,

%U 6,6,54,27,18,27,18,18,18,9,6,27,18,18,18,12,12,12,6,6,18,9,6,9,6,6,6,3,2,161

%N G.f. satisfies: A(x) = Sum_{n>=0} [A(x)^n (mod 3)]*x^n.

%H Paul D. Hanna, <a href="/A235526/b235526.txt">Table of n, a(n) for n = 0..200</a>

%F a(3^n) = 2*3^n - 1 for n>=0.

%F a(2*3^n) = 2*3^n for n>=0.

%F a(3^n-1) = 2 for n>=1.

%F a(3^n+1) = 3^n + 2 for n>=1.

%F a(n) == binomial(2*n,n)/(n+1) (mod 3); i.e., a(n) is congruent to Catalan number A000108(n) modulo 3.

%e G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 5*x^4 + 6*x^5 + 6*x^6 + 3*x^7 + 2*x^8 + 17*x^9 + 11*x^10 + 10*x^11 + 13*x^12 +...

%e The table of coefficients in A(x)^n reduced modulo 3 begins:

%e n=0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];

%e n=1: [1, 1, 2, 2, 2, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, ...];

%e n=2: [1, 2, 2, 2, 0, 0, 0, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...];

%e n=3: [1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, ...];

%e n=4: [1, 1, 2, 0, 0, 2, 1, 1, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, ...];

%e n=5: [1, 2, 2, 0, 2, 2, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...];

%e n=6: [1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];

%e n=7: [1, 1, 2, 1, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, ...];

%e n=8: [1, 2, 2, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...];

%e n=9: [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, ...];

%e n=10:[1, 1, 2, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, ...];

%e n=11:[1, 2, 2, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1, ...];

%e n=12:[1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, ...];

%e n=13:[1, 1, 2, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 1, ...];

%e n=14:[1, 2, 2, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 2, 2, 1, 0, 0, 1, ...];

%e n=15:[1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, ...];

%e n=16:[1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 1, ...];

%e n=17:[1, 2, 2, 1, 1, 1, 0, 0, 0, 0, 2, 2, 1, 1, 1, 0, 0, 0, 1, ...];

%e n=18:[1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, ...];

%e n=19:[1, 1, 2, 2, 2, 0, 0, 0, 2, 1, 1, 2, 2, 2, 0, 0, 0, 1, 0, ...];

%e n=20:[1, 2, 2, 2, 0, 0, 0, 2, 2, 1, 2, 2, 2, 0, 0, 0, 1, 1, 0, ...];

%e n=21:[1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, ...];

%e n=22:[1, 1, 2, 0, 0, 2, 1, 1, 0, 1, 1, 2, 0, 0, 1, 2, 2, 0, 0, ...];

%e n=23:[1, 2, 2, 0, 2, 2, 1, 0, 0, 1, 2, 2, 0, 1, 1, 2, 0, 0, 0, ...];

%e n=24:[1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, ...];

%e n=25:[1, 1, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, ...];

%e n=26:[1, 2, 2, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0],...];

%e n=27:[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],...]; ...

%e where the antidiagonal sums form this sequence.

%o (PARI) {MOD(F,n)=local(V=Vec(F));sum(k=0,#V-1,(V[k+1]%n)*x^k)+O(x^#V)}

%o {a(n)=local(A=1+x);for(i=1,n,A=1+sum(k=1,n,x^k*MOD((A+x*O(x^n))^k,3)));polcoeff(A,n)}

%o for(n=0,40,print1(a(n),", "))

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 23 2014