login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073099
Numerator of b(n) = n * Sum_{k=2^n..2^(n+1)-1} (-1)^k/k.
4
1, 31, 12307, 1180906852403, 4726403852635437852230311, 26387151472737581442533784610190235872453672267436617, 16379090991119093215568426722482532968867795792384100101494022155108529793899838205018451949281878220687877
OFFSET
1,2
LINKS
G. Vacca, A new series for the Eulerian constant gamma=.577..., Quart. J. Pure Appl. Math., Vol. 41 (1910), pp. 363-368.
FORMULA
Sum_{k>=1} b(k) = gamma = 0.5772... (A001620).
EXAMPLE
The fractions begin with 1/6, 31/210, 12307/120120, 1180906852403/18050444111700, ...
MATHEMATICA
a[n_] := Numerator[n * Sum[(-1)^k/k, {k, 2^n, 2^(n+1)-1}]]; Array[a, 7] (* Amiram Eldar, May 19 2022 *)
PROG
(PARI) a(n)=numerator( n*sum(k=2^n, 2^(n+1)-1, (-1)^k/k))
CROSSREFS
Cf. A001620, A073100 (denominators).
Sequence in context: A261947 A069451 A374668 * A245571 A074218 A161395
KEYWORD
easy,frac,nonn
AUTHOR
Benoit Cloitre, Aug 18 2002
STATUS
approved