login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of b(n) = n * Sum_{k=2^n..2^(n+1)-1} (-1)^k/k.
4

%I #21 May 19 2022 10:53:11

%S 1,31,12307,1180906852403,4726403852635437852230311,

%T 26387151472737581442533784610190235872453672267436617,

%U 16379090991119093215568426722482532968867795792384100101494022155108529793899838205018451949281878220687877

%N Numerator of b(n) = n * Sum_{k=2^n..2^(n+1)-1} (-1)^k/k.

%H Amiram Eldar, <a href="/A073099/b073099.txt">Table of n, a(n) for n = 1..10</a>

%H G. Vacca, <a href="https://books.google.fr/books?id=Q4qXAAAAMAAJ&amp;hl=fr&amp;pg=PA363#v=onepage&amp;q&amp;f=false">A new series for the Eulerian constant gamma=.577...</a>, Quart. J. Pure Appl. Math., Vol. 41 (1910), pp. 363-368.

%F Sum_{k>=1} b(k) = gamma = 0.5772... (A001620).

%e The fractions begin with 1/6, 31/210, 12307/120120, 1180906852403/18050444111700, ...

%t a[n_] := Numerator[n * Sum[(-1)^k/k, {k, 2^n, 2^(n+1)-1}]]; Array[a, 7] (* _Amiram Eldar_, May 19 2022 *)

%o (PARI) a(n)=numerator( n*sum(k=2^n,2^(n+1)-1,(-1)^k/k))

%Y Cf. A001620, A073100 (denominators).

%K easy,frac,nonn

%O 1,2

%A _Benoit Cloitre_, Aug 18 2002