login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073103
Number of solutions to x^4 == 1 (mod n).
15
1, 1, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 4, 2, 8, 8, 4, 2, 2, 8, 4, 2, 2, 8, 4, 4, 2, 4, 4, 8, 2, 8, 4, 4, 8, 4, 4, 2, 8, 16, 4, 4, 2, 4, 8, 2, 2, 16, 2, 4, 8, 8, 4, 2, 8, 8, 4, 4, 2, 16, 4, 2, 4, 8, 16, 4, 2, 8, 4, 8, 2, 8, 4, 4, 8, 4, 4, 8, 2, 32, 2, 4, 2, 8, 16, 2, 8, 8, 4, 8, 8, 4, 4, 2, 8, 16, 4, 2, 4, 8
OFFSET
1,3
COMMENTS
a(n) = 2*A060594(n) for n = 5, 10, 13, 15, 16, 17, 20, 25, 26, 29, .... This subsequence, which contains all the primes of form 4k+1, seems to be asymptotic to 2n.
Shadow transform of A123865. - Michel Marcus, Jun 06 2013
LINKS
Steven R. Finch, Quartic and Octic Characters Modulo n, arXiv:0907.4894 [math.NT], 2009.
Steven Finch, Greg Martin and Pascal Sebah, Roots of unity and nullity modulo n, Proc. Amer. Math. Soc., Vol. 138, No. 8 (2010), pp. 2729-2743.
Lorenz Halbeisen and Norbert Hungerbühler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150. (ps, pdf); see Definition 7 for the shadow transform.
Lorenz Halbeisen and Norbert Hungerbühler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150; see Definition 7 for the shadow transform.
N. J. A. Sloane, Transforms.
FORMULA
Sum_{k=1..n} a(k) seems to be asymptotic to C*n*Log(n) with C>1.4...(when Sum_{k=1..n} A060594(k) is asymptotic to C/2*n*Log(n)).
Multiplicative with a(p^e) = p^min(e-1, 3) if p = 2, 4 if p == 1 (mod 4), 2 if p == 3 (mod 4). - David W. Wilson, Jun 09 2005
In fact, Sum_{k=1..n} a(k) is asymptotic to c*n*log(n)^2 where 2*c=0.190876.... - Steven Finch, Aug 12 2009 [c = 7/(2*Pi^3) * Product_{p prime == 1 (mod 4)} (1 - 4/(p+1)^2) = 0.0954383605... (Finch et al., 2010). - Amiram Eldar, Mar 26 2021]
MAPLE
a:= n-> add(`if`(irem(j^4-1, n)=0, 1, 0), j=0..n-1):
seq(a(n), n=1..120); # Alois P. Heinz, Jun 06 2013
# alternative
A073103 := proc(n)
local a, pf, p, r;
a := 1 ;
for pf in ifactors(n)[2] do
p := op(1, pf);
r := op(2, pf);
if p = 2 then
a := a*p^min(r-1, 3) ;
else
if modp(p, 4) = 1 then
a := 4*a ;
else
a := 2*a ;
end if;
end if;
end do:
a ;
end proc: # R. J. Mathar, Mar 02 2015
MATHEMATICA
a[n_] := Sum[If[Mod[j^4-1, n] == 0, 1, 0], {j, 0, n-1}]; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Jun 12 2015, after Alois P. Heinz *)
f[2, e_] := 2^Min[e-1, 3]; f[p_, e_] := If[Mod[p, 4] == 1, 4, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
PROG
(PARI) a(n)=sum(i=1, n, if((i^4-1)%n, 0, 1))
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f~, if(f[i, 1]==2, 2^min(f[i, 2]-1, 3), if(f[i, 1]%4==1, 4, 2))) \\ Charles R Greathouse IV, Mar 02 2015
(Python)
from math import prod
from sympy import primefactors
def A073103(n): return (1<<min(s-1, 3) if (s:=(~n & n-1).bit_length()) else 1)*prod(1<<(5-(p&3)>>1) for p in primefactors(n>>s)) # Chai Wah Wu, Oct 26 2022
CROSSREFS
Sequence in context: A339377 A278266 A088200 * A247257 A069177 A077659
KEYWORD
easy,nonn,mult
AUTHOR
Benoit Cloitre, Aug 19 2002
STATUS
approved