login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339377 Number of triples (x, y, z) of natural numbers satisfying x+y = n and 2*x*y = z^2. 0
1, 2, 2, 4, 2, 2, 4, 2, 2, 6, 2, 4, 4, 2, 2, 4, 2, 4, 6, 4, 2, 4, 4, 2, 4, 2, 2, 8, 2, 2, 4, 2, 2, 10, 4, 2, 6, 2, 4, 4, 2, 4, 4, 4, 4, 6, 2, 2, 4, 2, 2, 10, 2, 2, 8, 4, 2, 10, 2, 4, 4, 2, 2, 6, 2, 2, 10, 4, 4, 4, 2, 2, 6, 4, 2, 4, 4, 4, 4, 2, 2, 10, 4, 4, 4, 4, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This sequence is inspired by the 4th problem proposed during the second day of the final round of the 18th Austrian Mathematical Olympiad in 1987. The problem asked to find all triples solutions (x, y, z) only for n = 1987 (see Link, Reference and last example).
Some properties:
-> Inequalities, 0 <= x, y <= n; 0 <= z <= floor(n*sqrt(2)/2)
-> z is even and (x,y) are not together even.
-> a(n) = 1 iff n = 0, and the only solution is (0,0,0).
-> for n >= 1, a(n) >= 2 because (0,n,0) and (n,0,0) are always solutions.
-> a(n) is even for n >= 1.
-> If n = 3k, then (k,2k,2k) and (2k,k,2k) are solutions.
-> If 2*(n-1) = m^2, then (1,n-1,m) and (n-1,1,m) are solutions (with n in A058331).
-> The formula for n>0 comes from (x+y=n and 2*x*y=z^2) <==> n^2 = |x-y|^2 + 2*z^2.
REFERENCES
Steve Dinh, The Hard Mathematical Olympiad Problems And Their Solutions, AuthorHouse, 2011, Problem 4 of Austrian Mathematical Olympiad 1987, page 29 [Warning: solution proposed in this book has a mistake with (x, y, z) = ([0, 1987], 1987-x, sqrt(2xy))].
LINKS
The IMO compendium, Problem 4, 18th Austrian Mathematical Olympiad, 1987.
FORMULA
a(0)=A218799(0); then for n>=1, a(n)=2*A218799(n) (remark from Hugo Pfoertner, Dec 02 2020).
EXAMPLE
a(9) = 6 and these 6 solutions are: (0, 9, 0), (1, 8, 4), (3, 6, 6), (6, 3, 6), (8, 1, 4), (9, 0, 0).
a(1987) = 4 and these 4 solutions are: (0, 1987, 0), (529, 1458, 1242), (1458, 529, 1242), (1987, 0, 0); this is the answer to the Olympiad problem in link.
CROSSREFS
Cf. A058331, A218799, A339378 (variant with x+y = n and x*y = z^2).
Sequence in context: A245525 A233412 A327892 * A278266 A088200 A073103
KEYWORD
nonn
AUTHOR
Bernard Schott, Dec 02 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 26 06:01 EDT 2024. Contains 374615 sequences. (Running on oeis4.)