OFFSET
1,3
COMMENTS
Conjecture: a(n) is always nonzero, i.e., prime(n) never divides the partition number p(n).
This conjecture does not hold with the smallest counterexample being n=1119414 (cf. A245662). - Max Alekseyev, Jul 27 2014
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
a(20) = -12 since p(20) = 627 == -12 (mod prime(20)=71).
MATHEMATICA
rMod[m_, n_]:=Mod[m, n, -(n-1)/2]
a[n_]:=rMod[PartitionsP[n], Prime[n]]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Jul 25 2014
STATUS
approved