OFFSET
1,3
COMMENTS
Conjecture: a(n) is always nonzero, i.e., prime(n) never divides the Lucas number L(2*n).
We have verified this for all n = 1, ..., 2*10^6.
On Jul 26 2014, Bjorn Poonen (from MIT) found a counterexample with n = 14268177. - Zhi-Wei Sun, Jul 26 2014
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
EXAMPLE
a(10) = -11 since L(2*10) = 15127 == -11 (mod prime(10)=29).
MATHEMATICA
rMod[m_, n_]:=Mod[m, n, -(n-1)/2]
a[n_]:=rMod[LucasL[2n], Prime[n]]
Table[a[n], {n, 1, 80}]
CROSSREFS
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Jul 25 2014
STATUS
approved