login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247257
The number of octic characters modulo n.
9
1, 1, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 4, 2, 8, 8, 8, 2, 2, 8, 4, 2, 2, 8, 4, 4, 2, 4, 4, 8, 2, 16, 4, 8, 8, 4, 4, 2, 8, 16, 8, 4, 2, 4, 8, 2, 2, 16, 2, 4, 16, 8, 4, 2, 8, 8, 4, 4, 2, 16, 4, 2, 4, 16, 16, 4, 2, 16, 4, 8, 2, 8, 8, 4, 8, 4, 4, 8, 2, 32
OFFSET
1,3
COMMENTS
Number of solutions to x^8 == 1 (mod n). - Jianing Song, Nov 10 2019
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Steven Finch, Quartic and octic characters modulo n, arXiv:0907.4894 [math.NT], 2009.
FORMULA
Multiplicative with a(p^e) = p^min(e-1, 4) if p = 2, gcd(8, p-1) if p > 2. - Jianing Song, Nov 10 2019
MAPLE
A247257 := proc(n)
local a, pf, p, r;
a := 1 ;
for pf in ifactors(n)[2] do
p := op(1, pf);
r := op(2, pf);
if p = 2 then
if r >= 5 then
a := a*16 ;
else
a := a*op(r, [1, 2, 4, 8]) ;
end if;
elif modp(p, 4) = 3 then
a := a*2;
elif modp(p, 8) = 5 then
a := a*4;
elif modp(p, 8) = 1 then
a := a*8;
else
error
end if;
end do:
a ;
end proc:
MATHEMATICA
g[p_, e_] := Which[p==2, 2^Min[e-1, 4], Mod[p, 4]==3, 2, Mod[p, 8]==5, 4, True, 8];
a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n];
Array[a, 80] (* Jean-François Alcover, Nov 26 2017, after Charles R Greathouse IV *)
PROG
(PARI) g(p, e)=if(p==2, 2^min(e-1, 4), if(p%4==3, 2, if(p%8==5, 4, 8)))
a(n)=my(f=factor(n)); prod(i=1, #f~, g(f[i, 1], f[i, 2])) \\ Charles R Greathouse IV, Mar 02 2015
CROSSREFS
Number of solutions to x^k == 1 (mod n): A060594 (k=2), A060839 (k=3), A073103 (k=4), A319099 (k=5), A319100 (k=6), A319101 (k=7), this sequence (k=8).
Sequence in context: A278266 A088200 A073103 * A069177 A077659 A367953
KEYWORD
mult,nonn,easy
AUTHOR
R. J. Mathar, Mar 02 2015
STATUS
approved