login
A367953
Fixed point of the morphism 2 -> {2,2,4}, t -> {t-2,t,t,t+2} (for t > 2), starting from {2}.
5
2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 6, 4, 6, 6, 8, 2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4, 6, 4, 6, 6, 8, 2, 2, 4, 2, 2, 4, 2, 4, 4, 6, 2, 2, 4, 2, 4, 4, 6, 2, 4, 4
OFFSET
1,1
COMMENTS
The first binomial(2*k+1,k+1) = A001700(k) terms (k >= 0) are the row lengths of the Christmas tree pattern (A367508) of order 2*k+1. See A367951 for the morphism that generates row lengths for even orders.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..24310 (first 8 iterations).
MATHEMATICA
Nest[Flatten[ReplaceAll[#, {2->{2, 2, 4}, t_/; t>2:>{t-2, t, t, t+2}}]]&, {2}, 5]
PROG
(Python)
from itertools import islice
def A367953_gen(): # generator of terms
a, l = [2], 0
while True:
yield from a[l:]
c = sum(([2, 2, 4] if d==2 else [d-2, d, d, d+2] for d in a), start=[])
l, a = len(a), c
A367953_list = list(islice(A367953_gen(), 30)) # Chai Wah Wu, Dec 26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo Xausa, Dec 05 2023
STATUS
approved