login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367955
Number T(n,k) of partitions of [n] whose block maxima sum to k, triangle T(n,k), n>=0, n<=k<=n*(n+1)/2, read by rows.
11
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 5, 2, 3, 1, 1, 1, 2, 5, 10, 7, 7, 11, 3, 4, 1, 1, 1, 2, 5, 10, 23, 15, 23, 25, 37, 18, 14, 19, 4, 5, 1, 1, 1, 2, 5, 10, 23, 47, 39, 49, 81, 84, 129, 74, 78, 70, 87, 33, 23, 29, 5, 6, 1, 1, 1, 2, 5, 10, 23, 47, 103, 81, 129, 172, 261, 304, 431, 299, 325, 376, 317, 424, 196, 183, 144, 165, 52, 34, 41, 6, 7, 1
OFFSET
0,7
COMMENTS
Rows and also columns reversed converge to A365441.
T(n,k) is defined for all n,k >= 0. The triangle contains only the positive terms. T(n,k) = 0 if k < n or k > n*(n+1)/2.
LINKS
FORMULA
Sum_{k=n..n*(n+1)/2} k * T(n,k) = A278677(n+1) for n>=1.
Sum_{k=n..n*(n+1)/2} (k-n) * T(n,k) = A200660(n) for n>=1.
T(n,n) = T(n,n*(n+1)/2) = 1.
EXAMPLE
T(4,7) = 5: 123|4, 124|3, 13|24, 14|23, 1|2|34.
T(5,9) = 10: 1234|5, 1235|4, 124|35, 125|34, 134|25, 135|24, 14|235, 15|234, 1|23|45, 1|245|3.
T(5,13) = 3: 1|23|4|5, 1|24|3|5, 1|25|3|4.
T(5,14) = 4: 12|3|4|5, 13|2|4|5, 14|2|3|5, 15|2|3|4.
T(5,15) = 1: 1|2|3|4|5.
Triangle T(n,k) begins:
1;
. 1;
. . 1, 1;
. . . 1, 1, 2, 1;
. . . . 1, 1, 2, 5, 2, 3, 1;
. . . . . 1, 1, 2, 5, 10, 7, 7, 11, 3, 4, 1;
. . . . . . 1, 1, 2, 5, 10, 23, 15, 23, 25, 37, 18, 14, 19, 4, 5, 1;
...
MAPLE
b:= proc(n, m) option remember; `if`(n=0, 1,
b(n-1, m)*m + expand(x^n*b(n-1, m+1)))
end:
T:= (n, k)-> coeff(b(n, 0), x, k):
seq(seq(T(n, k), k=n..n*(n+1)/2), n=0..10);
# second Maple program:
b:= proc(n, i, t) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, t^i, `if`(t=0, 0, t*b(n, i-1, t))+
(t+1)^max(0, 2*i-n-1)*b(n-i, min(n-i, i-1), t+1)))
end:
T:= (n, k)-> b(k, n, 0):
seq(seq(T(n, k), k=n..n*(n+1)/2), n=0..10);
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]];
T[0, 0] = 1; T[n_, k_] := b[k, n, 0];
Table[Table[T[n, k], {k, n, n*(n + 1)/2}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 03 2024, after Alois P. Heinz's second Maple program *)
CROSSREFS
Row sums give A000110.
Column sums give A204856.
Antidiagonal sums give A368102.
T(2n,3n) gives A365441.
T(n,2n) gives A368675.
Row maxima give A367969.
Row n has A000124(n-1) terms (for n>=1).
Cf. A000217, A124327 (the same for block minima), A200660, A278677.
Sequence in context: A265312 A241531 A362277 * A273894 A308035 A336479
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Dec 05 2023
STATUS
approved